Article

Aurora B-dependent regulation of class IIa histone deacetylases by mitotic nuclear localization signal phosphorylation.

Princeton University, United States.
Molecular &amp Cellular Proteomics (Impact Factor: 7.25). 08/2012; DOI: 10.1074/mcp.M112.021030
Source: PubMed

ABSTRACT Class IIa histone deacetylases (HDACs 4/5/7/9) are transcriptional regulators with critical roles in cardiac disease, cancer, and viral infection. HDAC inhibitors are promising anti-cancer agents, and while they are known to disrupt mitotic progression, the underlying mechanisms of mitotic regulation by HDACs are not fully understood. Here we provide the first identification of histone deacetylases as substrates of Aurora B kinase (AurB). Our study identifies class IIa HDACs as a novel family of AurB targets and provides the first evidence that HDACs are temporally and spatially regulated by phosphorylation during the cell cycle. We define the precise sites of AurB-mediated phosphorylation as a conserved serine within the nuclear localization signals of HDAC4, HDAC5, and HDAC9 at Ser265, Ser278, and Ser242, respectively. We establish that AurB interacts with these HDACs in vivo, and that this association increases upon disruption of 14-3-3 binding. We observe co-localization of endogenous, phosphorylated HDACs with AurB at the mitotic midzone in late anaphase and the midbody during cytokinesis, complemented by a reduction in HDAC interactions with components of the nuclear co-repressor (NCoR) complex. We propose that AurB-dependent phosphorylation of HDACs induces sequestration within a phosphorylation gradient at the midzone, maintaining separation from re-forming nuclei and contributing to transcriptional control.

0 Bookmarks
 · 
55 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Class IIa histone deacetylases (HDACs) are critical transcriptional regulators, shuttling between nuclear and cytoplasmic cellular compartments. Within the nucleus, these HDACs repress transcription as components of multi-protein complexes, such as the nuclear co-repressor (NCoR) and beclin-6 co-repressor (BCoR) complexes. Cytoplasmic relocalization releases this transcriptional repressive function. Class IIa HDAC shuttling is controlled, in part, by phosphorylations flanking the nuclear localization signal (NLS). Furthermore, we have reported that phosphorylation within the NLS by the kinase Aurora B modulates the localization and function of the class IIa HDAC5 during mitosis. While we identified numerous additional HDAC5 phosphorylations, their regulatory functions remain unknown. Here we studied phosphorylation sites within functional HDAC5 domains, including the deacetylation domain (DAC, Ser755), nuclear export signal (NES, S1108), and an acidic domain (AD, Ser611). We have generated phosphomutant cell lines to investigate how absence of phosphorylation at these sites impacts HDAC5 localization, enzymatic activity, and protein interactions. Combining molecular biology and quantitative mass spectrometry, we have defined the interactions and HDAC5-containing complexes mediated by site-specific phosphorylation and quantified selected changes using parallel reaction monitoring (PRM). These results expand the current understanding regarding HDAC regulation, and the functions of this critical family of proteins within human cells. This article is protected by copyright. All rights reserved.
    Proteomics 06/2014; · 3.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Class IIa histone deacetylases (HDACs4, -5, -7, and -9) modulate the physiology of the human cardiovascular, musculoskeletal, nervous and immune systems. The regulatory capacity of this family of enzymes stems from their ability to shuttle between nuclear and cytoplasmic compartments in response to signal-driven post-translational modification. Here, we review the current knowledge of modifications that control spatial and temporal HDAC functions by regulating subcellular localization, transcriptional functions, and cell cycle-dependent activity, ultimately impacting on human disease. We discuss the contribution of these modifications to cardiac and vascular hypertrophy, myoblast differentiation, neuronal cell survival, and neurodegenerative disorders. Copyright © 2015, The American Society for Biochemistry and Molecular Biology.
    Molecular & cellular proteomics : MCP. 01/2015;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent progress in the understanding of seven-transmembrane receptor (7TMR) signalling has promoted the development of a new generation of pathway selective ligands. The angiotensin II type I receptor (AT1aR) is one of the most studied 7TMRs with respect to selective activation of the β-arrestin dependent signalling. Two complimentary global phosphoproteomics studies have analyzed the complex signalling induced by the AT1aR. Here we integrate the data sets from these studies and perform a joint analysis using a novel method for prediction of differential kinase activity from phosphoproteomics data. The method builds upon NetworKIN, which applies sophisticated linear motif analysis in combination with contextual network modelling to predict kinase-substrate associations with high accuracy and sensitivity. These predictions form the basis for subsequently nonparametric statistical analysis to identify likely activated kinases. This suggested that AT1aR-dependent signalling activates 48 of the 285 kinases detected in HEK293 cells. Of these, Aurora B, CLK3 and PKG1 have not previously been described in the pathway whereas others, such as PKA, PKB and PKC, are well known. In summary, we have developed a new method for kinase-centric analysis of phosphoproteomes to pinpoint differential kinase activity in large-scale data sets.
    PLoS ONE 04/2014; 9(4):e94672. · 3.53 Impact Factor