Article

Reduced Na+ Affinity Increases Turnover of Salmonella enterica Serovar Typhimurium MelB.

Department of Cell Physiology & Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.
Journal of bacteriology (Impact Factor: 2.69). 08/2012; 194(20):5538-44.
Source: PubMed

ABSTRACT The melibiose permease of Salmonella enterica serovar Typhimurium (MelB(St)) catalyzes symport of melibiose with Na(+), Li(+), or H(+). Bioinformatics and mutational analyses indicate that a conserved Gly117 (helix IV) is a component of the Na(+)-binding site. In this study, Gly117 was mutated to Ser, Asn, or Cys. All three mutations increase the maximum rate (V(max)) for melibiose transport in Escherichia coli DW2 and greatly decrease Na(+) affinity, indicating that intracellular release of Na(+) is facilitated. Rapid melibiose transport, particularly by the G117N mutant, triggers osmotic lysis in the lag phase of growth. The findings support the previous conclusion that Gly117 plays an important role in cation binding and translocation. Furthermore, a spontaneous second-site mutation (P148L between loop(4-5) and helix V) in the G117C mutant prevents cell lysis. This mutation significantly decreases V(max) with little effect on cosubstrate binding in G117C, G117S, and G117N mutants. Thus, the P148L mutation specifically inhibits transport velocity and thereby blocks the lethal effect of elevated melibiose transport in the Gly117 mutants.

0 Bookmarks
 · 
116 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A highly diverse DNA library coding for ankyrin seven-repeat proteins (ANK-N5C) was designed and constructed by a PCR-based combinatorial assembly strategy. A bacterial melibiose fermentation assay was adapted for in vivo functional screen. We isolated a transcription blocker that completely inhibits the melibiose-dependent expression of α-galactosidase (MelA) and melibiose permease (MelB) of Escherichia coli by specifically preventing activation of the melAB operon. High-resolution crystal structural determination reveals that the designed ANK-N5C protein has a typical ankyrin fold, and the specific transcription blocker, ANK-N5C-281, forms a domain-swapped dimer. Functional tests suggest that the activity of MelR, a DNA-binding transcription activator and a member of AraC family of transcription factors, is inhibited by ANK-N5C-281 protein. All ANK-N5C proteins are expected to have a concave binding area with negative surface potential, suggesting that the designed ANK-N5C library proteins may facilitate the discovery of binders recognizing structural motifs with positive surface potential, like in DNA-binding proteins. Overall, our results show that the established library is a useful tool for the discovery of novel bioactive reagents.
    Scientific reports. 01/2015; 5:8070.
  • Source
    Dataset: 3134.full
  • Source
    Dataset: 3134.full

Full-text (2 Sources)

Download
40 Downloads
Available from
May 15, 2014