Article

Resonance-enhanced two-photon ionization spectroscopy and theoretical calculations of 3,5-difluoroanisole and its Ar-containing complex.

Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy (Impact Factor: 1.98). 07/2012; 96:578-85. DOI: 10.1016/j.saa.2012.07.022
Source: PubMed

ABSTRACT The structure and vibrations of 3,5-difluoroanisole (3,5-DFA) in the first electronically excited (S(1)) state were studied by mass-analyzed resonant two-photon ionization (R2PI) technique as well as the quantum chemical calculations. The ab initio and density functional theory (DFT) calculations reveal that only one structure is stable for each of the S(0), S(1), and D(0) states. In the one color R2PI spectrum, the band origin of the S(1)←S(0) electronic transition (0(0) band) of 3,5-DFA is found to be 37,595±3cm(-1). In the S(1) state, most of the bands observed are related to the in-plane ring deformation and out-of-plane bending vibrations. The adiabatic ionization energy (IE) of 3,5-DFA is determined to be 70,096±15cm(-1) by the two color R2PI technique, in agreement with the values predicted by the DFT approaches. The dihalogen-substitution effects on the molecular structure, vibrational frequencies, and electronic transition and ionization energies were discussed in detail. The van der Waals complex of 3,5-DFA with argon (3,5-DFA···Ar) was also observed and studied. The 0(0) band of 3,5-DFA···Ar complex is red-shifted by about 9cm(-1) with respect to that of 3,5-DFA. Both the experimental data and the calculated results indicate that the formation of 3,5-DFA···Ar complex gives only a weak influence on the properties of 3,5-DFA moiety.

0 Bookmarks
 · 
48 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ab initio and density functional theory (DFT) calculations reveal that two rotamers, denoted by cis and trans 3-chloro-5-fluoroanisole (3C5FA), are stable for each of the S(0), S(1), and D(0) states. In the one-color resonant two-photon ionization (R2PI) spectra, the band origins of the S(1)←S(0) electronic transition (0(0) bands) of cis(35)Cl-3C5FA and cis(37)Cl-3C5FA are both located at 36,468±3cm(-1), while the 0(0) bands of trans(35)Cl-3C5FA and trans(37)Cl-3C5FA are found to be 36,351±3 and 36,354±3cm(-1). The two rotamers display very similar vibrational frequencies in the S(1) state, and the observed active modes mainly involve the in-plane ring deformation vibrations. By the two-color R2PI spectroscopy, the adiabatic ionization energies (IEs) of both isotopomers of 3C5FA are determined to be 69,720±15cm(-1) for the cis rotamer and 69,636±15cm(-1) for the trans rotamer. The substitution, conformation, and isotope effects on the properties of 3C5FA, including the molecular structures, vibrational frequencies, and electronic transition and ionization energies, were also discussed in detail.
    Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy 11/2012; 104C:235-242. · 1.98 Impact Factor