Mapping Genetic Variants Associated with Beta-Adrenergic Responses in Inbred Mice

Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland.
PLoS ONE (Impact Factor: 3.23). 07/2012; 7(7):e41032. DOI: 10.1371/journal.pone.0041032
Source: PubMed


β-blockers and β-agonists are primarily used to treat cardiovascular diseases. Inter-individual variability in response to both drug classes is well recognized, yet the identity and relative contribution of the genetic players involved are poorly understood. This work is the first genome-wide association study (GWAS) addressing the values and susceptibility of cardiovascular-related traits to a selective β(1)-blocker, Atenolol (ate), and a β-agonist, Isoproterenol (iso). The phenotypic dataset consisted of 27 highly heritable traits, each measured across 22 inbred mouse strains and four pharmacological conditions. The genotypic panel comprised 79922 informative SNPs of the mouse HapMap resource. Associations were mapped by Efficient Mixed Model Association (EMMA), a method that corrects for the population structure and genetic relatedness of the various strains. A total of 205 separate genome-wide scans were analyzed. The most significant hits include three candidate loci related to cardiac and body weight, three loci for electrocardiographic (ECG) values, two loci for the susceptibility of atrial weight index to iso, four loci for the susceptibility of systolic blood pressure (SBP) to perturbations of the β-adrenergic system, and one locus for the responsiveness of QTc (p<10(-8)). An additional 60 loci were suggestive for one or the other of the 27 traits, while 46 others were suggestive for one or the other drug effects (p<10(-6)). Most hits tagged unexpected regions, yet at least two loci for the susceptibility of SBP to β-adrenergic drugs pointed at members of the hypothalamic-pituitary-thyroid axis. Loci for cardiac-related traits were preferentially enriched in genes expressed in the heart, while 23% of the testable loci were replicated with datasets of the Mouse Phenome Database (MPD). Altogether these data and validation tests indicate that the mapped loci are relevant to the traits and responses studied.

Download full-text


Available from: Jacques S Beckmann,
  • [Show abstract] [Hide abstract]
    ABSTRACT: Quantitative genetic studies in model organisms, particularly in mice, have been extremely successful in identifying chromosomal regions that are associated with a wide variety of behavioral and other traits. However, it is now widely understood that identification of the underlying genes will be far more challenging. In the last few years, a variety of populations have been utilized in an effort to more finely map these chromosomal regions with the goal of identifying specific genes. The common property of these newer populations is that linkage disequilibrium spans relatively short distances, which permits fine-scale mapping resolution. This review focuses on advanced intercross lines (AILs) which are the simplest such population. As originally proposed in 1995 by Darvasi and Soller, an AIL is the product of intercrossing two inbred strains beyond the F2 generation. Unlike recombinant inbred strains, AILs are maintained as outbred populations; brother-sister matings are specifically avoided. Each generation of intercrossing beyond the F2 further degrades linkage disequilibrium between adjacent makers, which allows for fine-scale mapping of quantitative trait loci (QTLs). Advances in genotyping technology and techniques for the statistical analysis of AILs have permitted rapid advances in the application of AILs. We review some of the analytical issues and available software, including QTLRel, EMMA, EMMAX, GEMMA, TASSEL, GRAMMAR, WOMBAT, Mendel, and others.
    Mammalian Genome 06/2014; 25(7). DOI:10.1007/s00335-014-9523-1 · 3.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In contrast to many other human diseases, the use of genome-wide association studies (GWAS) to identify genes for heart failure (HF) has had limited success. We will discuss the underlying challenges as well as potential new approaches to understanding the genetics of common forms of HF. Recent research using intermediate phenotypes, more detailed and quantitative stratification of HF symptoms, founder populations and novel animal models has begun to allow researchers to make headway toward explaining the genetics underlying HF using GWAS techniques. By expanding analyses of HF to improved clinical traits, additional HF classifications and innovative model systems, the intractability of human HF GWAS should be ameliorated significantly.
    Current Opinion in Cardiology 03/2015; 30(3). DOI:10.1097/HCO.0000000000000160 · 2.70 Impact Factor