Article

Matrix metalloproteinase-19 is a key regulator of lung fibrosis in mice and humans.

Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico DF, Mexico. .
American Journal of Respiratory and Critical Care Medicine (Impact Factor: 11.04). 08/2012; 186(8):752-62. DOI: 10.1164/rccm.201202-0302OC
Source: PubMed

ABSTRACT Rationale: Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by epithelial phenotypic changes and fibroblast activation. Based on the temporal heterogeneity of IPF, we hypothesized that hyperplastic alveolar epithelial cells regulate the fibrotic response. Objectives: To identify novel mediators of fibrosis comparing the transcriptional signature of hyperplastic epithelial cells and conserved epithelial cells in the same lung. Methods: Laser capture microscope and microarrays analysis were used to identify differentially expressed genes in IPF lungs. Bleomycin-induced lung fibrosis was evaluated in Mmp19-deficient and wild-type (WT) mice. The role of matrix metalloproteinase (MMP)-19 was additionally studied by transfecting the human MMP19 in alveolar epithelial cells. Measurements and Main Results: Laser capture microscope followed by microarray analysis revealed a novel mediator, MMP-19, in hyperplastic epithelial cells adjacent to fibrotic regions. Mmp19(-/-) mice showed a significantly increased lung fibrotic response to bleomycin compared with WT mice. A549 epithelial cells transfected with human MMP19 stimulated wound healing and cell migration, whereas silencing MMP19 had the opposite effect. Gene expression microarray of transfected A549 cells showed that PTGS2 (prostaglandin-endoperoxide synthase 2) was one of the highly induced genes. PTGS2 was overexpressed in IPF lungs and colocalized with MMP-19 in hyperplastic epithelial cells. In WT mice, PTGS2 was significantly increased in bronchoalveolar lavage and lung tissues after bleomycin-induced fibrosis, but not in Mmp19(-/-) mice. Inhibition of Mmp-19 by siRNA resulted in inhibition of Ptgs2 at mRNA and protein levels. Conclusions: Up-regulation of MMP19 induced by lung injury may play a protective role in the development of fibrosis through the induction of PTGS2.

0 Bookmarks
 · 
152 Views
  • American Journal of Respiratory and Critical Care Medicine 05/2013; 187(9):920-5. · 11.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fibrosis - a debilitating condition that can occur in most organs - is characterized by excess deposition of a collagen-rich extracellular matrix (ECM). At first sight, the activities of proteinases that can degrade matrix, such as matrix metalloproteinases (MMPs), might be expected to be under-expressed in fibrosis or, if present, could function to resolve the excess matrix. However, as we review here, some MMPs are indeed anti-fibrotic, whereas others can have pro-fibrotic functions. MMPs modulate a range of biological processes, especially processes related to immunity and tissue repair and/or remodeling. Although we do not yet know precisely how MMPs function during fibrosis - that is, the protein substrate or substrates that an individual MMP acts on to effect a specific process - experiments in mouse models demonstrate that MMP-dependent functions during fibrosis are not limited to effects on ECM turnover. Rather, data from diverse models indicate that these proteinases influence cellular activities as varied as proliferation and survival, gene expression, and multiple aspects of inflammation that, in turn, impact outcomes related to fibrosis.
    Disease Models and Mechanisms 02/2014; 7(2):193-203. · 4.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Over the past 50 years, steady growth in the field of metalloproteinase biology has shown that the degradation of extracellular matrix components represents only a fraction of the functions performed by these enzymes and has highlighted their fundamental roles in immunity. Metalloproteinases regulate aspects of immune cell development, effector function, migration and ligand-receptor interactions. They carry out ectodomain shedding of cytokines and their cognate receptors. Together with their endogenous inhibitors TIMPs (tissue inhibitor of metalloproteinases), these enzymes regulate signalling downstream of the tumour necrosis factor receptor and the interleukin-6 receptor, as well as that downstream of the epidermal growth factor receptor and Notch, which are all pertinent for inflammatory responses. This Review discusses the metalloproteinase family as a crucial component in immune cell development and function.
    Nature Reviews Immunology 09/2013; 13(9):649-65. · 32.25 Impact Factor