Article

Toxicity of deoxynivalenol and its acetylated derivatives on the intestine: differential effects on morphology, barrier function, tight junction proteins, and mitogen-activated protein kinases.

* INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, F-31027 Toulouse, France;
Toxicological Sciences (Impact Factor: 4.33). 08/2012; 130(1):180-90. DOI: 10.1093/toxsci/kfs239
Source: PubMed

ABSTRACT The intestinal epithelium is the first barrier against food contaminants and is highly sensitive to mycotoxins, especially de oxynivalenol (DON). Consumption of DON-contaminated food is associated with outbreaks of gastroenteritis. In cereals and their byproducts, DON is present together with two acetylated derivatives, 3-ADON and 15-ADON. The aim of this study was to compare the intestinal toxicity of DON and A-DONs, using noncytotoxic doses. The toxicity was assessed using in vitro (intestinal epithelial cell line), ex vivo (intestinal explants), and in vivo (animals exposed to mycotoxin-contaminated diets) models. The effects were studied on cell proliferation, barrier function, and intestinal structure. The mechanism of toxicity was investigated by measuring the expression of the tight junction proteins and of phosphorylated ERK1/2, p38, and JNK, which are effectors of signaling pathway involved in cellular programs including embryogenesis, proliferation, differentiation, and apoptosis. On proliferating cells, 3-ADON was less toxic than DON, which was less toxic than 15-ADON. On differentiated cells, 15-ADON impaired the barrier function, whereas DON and 3-ADON did not have a significant effect. Similarly, ex vivo and in vivo, 15-ADON caused more histological lesions than DON or 3-ADON. At the molecular level, the 15-ADON activated the mitogen-activated protein kinases (MAPK) ERK1/2, p38, and JNK in the intestinal cell line, explants, and the jejunum from exposed animals at lower dose than DON and 3-ADON. Our results show that the higher toxicity of 15-DON is due to its ability to activate the MAPK. Given that cereal-based foods are contaminated with DON and acetylated-DON, the higher toxicity of 15-ADON should be taken into account.

0 Bookmarks
 · 
93 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The natural food contaminants, mycotoxins, are regarded as an important risk factor for human and animal health, as up to 25% of the world's crop production may be contaminated. The Fusarium genus produces large quantities of fusariotoxins, among which the trichothecenes are considered as a ubiquitous problem worldwide. The gastrointestinal tract is the first physiological barrier against food contaminants, as well as the first target for these toxicants. An increasing number of studies suggest that intestinal epithelial cells are targets for deoxynivalenol (DON) and other Type B trichothecenes (TCTB). In humans, various adverse digestive symptoms are observed on acute exposure, and in animals, these toxins induce pathological lesions, including necrosis of the intestinal epithelium. They affect the integrity of the intestinal epithelium through alterations in cell morphology and differentiation and in the barrier function. Moreover, DON and TCTB modulate the activity of intestinal epithelium in its role in immune responsiveness. TCTB affect cytokine production by intestinal or immune cells and are supposed to interfere with the cross-talk between epithelial cells and other intestinal immune cells. This review summarizes our current knowledge of the effects of DON and other TCTB on the intestine.
    Toxins. 01/2014; 6(5):1615-1643.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: c-Jun N-terminal Kinase (JNK) is a family of protein kinases, which are activated by stress stimuli such as inflammation, heat stress and osmotic stress, and regulate diverse cellular processes including proliferation, survival and apoptosis. In this review, we focus on a recently discovered function of JNK as a regulator of intercellular adhesion. We summarize the existing knowledge regarding the role of JNK during the formation of cell-cell junctions. The potential mechanisms and implications for processes requiring dynamic formation and dissolution of cell-cell junctions including wound healing, migration, cancer metastasis and stem cell differentiation are also discussed.
    Tissue barriers. 12/2013; 1(5):e26845.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In case of mycotoxin contaminations, food and feedstuff are usually contaminated by more than one toxin. However toxicological data concerning the effects of mycotoxin combinations are sparse. The intestinal epithelium is the first barrier against food contaminants and this constantly renewing organ is particularly sensitive to mycotoxins. The aim of this study was to investigate the effects of deoxynivalenol (DON) and four other type B trichothecenes (TCTB), 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), nivalenol (NIV) and fusarenon-X (FX) alone or in combination on intestinal epithelial cells. Proliferating, non-transformed IPEC-1 cells were exposed to increasing doses of TCTB, alone or in binary mixtures and mycotoxin-induced cytotoxicity was measured with MTT test. The toxicological interactions were assessed using the isobologram-Combination index method. The five tested mycotoxins and their mixtures had a dose-dependent effect on the proliferating enterocytes. DON-NIV, DON-15-ADON and 15-ADON-3-ADON combinations were synergistic, with magnitude of synergy for 10 % cytotoxicity ranging from 2 to 7. The association between DON and 3-ADON also demonstrated a synergy but only at high doses, at lower doses antagonism was noted. Additivity was observed between NIV and FX, and antagonism between DON and FX. These results indicate that the simultaneous presence of mycotoxins in food commodities and diet may be more toxic than predicted from the mycotoxins alone. This synergy should be taken into account considering the frequent co-occurrence of TCTB in the diet.
    Archives of toxicology. 07/2014;