Photodynamic activity of viral nanoparticles conjugated with C-60

Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
Chemical Communications (Impact Factor: 6.72). 08/2012; 48(72):9044-6. DOI: 10.1039/c2cc34695h
Source: PubMed

ABSTRACT The development of viral nanoparticles (VNP) displaying multiple copies of the buckyball (C(60)) and their photodynamic activity is described. VNP-C(60) conjugates were assembled using click chemistry. Cell uptake and cell killing using white light therapy and a prostate cancer cell line is demonstrated.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, the synthesis of water-soluble fullerene derivatives bearing on one side a poly(amidoamine) (PAMAM) dendron with peripheral carboxylic groups and an alkyne moiety on the other side is presented. Fullerodendrimers with tert-butyl ester groups at the periphery were first prepared by treating C60 with unsymmetrical malonates through the use of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)/I2 or DBU/CBr4 conditions. The latter led to an unexpected addition of dibromocarbene on C60. The tert-butyl esters were then cleaved using formic acid and gave the corresponding carboxyfullerene derivatives. The second generation with eight carboxylic groups at the periphery was easily dissolved in water, whereas the first generation with its four carboxylic groups can only be solubilized in a basic medium. These compounds self-assemble into micelle-like aggregates probably composed of a cluster of C60 surrounded by a PAMAM shell. The alkyne moiety was then used as a chemical anchor to immobilize in water fullerodendrimers on the surface of azido-coated polymer nanoparticles by means of the copper(I)-catalyzed azide and alkyne cycloaddition reaction. At room temperature, this reaction is competing with azido cycloaddition onto the fullerene core. Given the high density of azide anchoring groups on the nanoparticle surface and the size of the fullerodendrimers, unreacted azides are still active and are available for subsequent functional arrangements. This strategy paves the way for the design of functional fullerene-rich nanomaterials that could be of interest in the field of materials science.
    ChemPlusChem 04/2013; 78(4). DOI:10.1002/cplu.201300045 · 3.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report a facile and versatile strategy to encapsulate pristine fullerene (C60) within spherical or wormlike block copolymer micelles through interfacial instability of emulsion droplets. C60 and amphiphilic block copolymer polystyrene-b-poly(ethylene oxide) were firstly dispersed in chloroform. The resulting solution was emulsified with aqueous sodium dodecylsulfate solution by simply shaking it. The emulsion droplets were collected in an open container and the solvent was allowed to evaporate. During solvent evaporation, the emulsion droplets became unstable and broke into tiny droplets, i.e., interfacial instabilities occurred, triggering the formation of uniform spherical micelles with encapsulated fullerenes in the micellar cores. More interestingly, fullerene addition induced a morphological transition from cylindrical micelles to string-of-vesicles and then to spherical micelles with increasing fullerene contents of 5 wt%, 10 wt%, and 30 wt%, respectively. We show that the optical properties of the confined C60 molecules can be modified by varying the quantity of fullerenes in the micelles. In addition, poly(3-hexylthiophene) (P3HT) can be co-encapsulated with C60 into the micellar cores when P3HT was dissolved in the initial polymer solution prior to emulsification. Presence of C60 in the micellar cores induced fluorescence quenching of P3HT due to photoinduced energy transfer from electron-donating P3HT to electron-accepting C60 molecules. Hybrid micelles with well-controlled structures and components can be potentially useful in the area of photodynamic therapy and photovoltaics.
    Journal of Colloid and Interface Science 03/2014; 418:81–86. DOI:10.1016/j.jcis.2013.12.004 · 3.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Traditional drug delivery strategies involve drugs which are not targeted towards the desired tissue. This can lead to undesired side effects, as normal cells are affected by the drugs as well. Therefore, new systems are now being developed which combine targeting functionalities with encapsulation of drug cargo. Protein nanocages are highly promising drug delivery platforms due to their perfectly defined structures, biocompatibility, biodegradability and low toxicity. A variety of protein nanocages have been modified and functionalized for these types of applications. In this review, we aim to give an overview of different types of modifications of protein-based nanocontainers for drug delivery applications.
    Nanoscale 05/2014; 6(13). DOI:10.1039/c4nr00915k · 6.74 Impact Factor