- [Show abstract] [Hide abstract]

**ABSTRACT:**We classify irreducible II_1 subfactors A \subset B such that B \ominus A is reducible as an A-A bimodule, with index at most 6+1/5, leaving aside the composite subfactors at index exactly 6. Previous work has already achieved this up to index 3+\sqrt{5} \approx 5.23. We find there are exactly three such subfactors with index in (3+\sqrt{5}, 6+1/5], all with index 3+2\sqrt{2}. One of these comes from SO(3)_q at a root of unity, while the other two appear to be closely related, and are `braided up to a sign'.10/2013; -
##### Article: Pivotal fusion categories of rank 3 (with an Appendix written jointly with Dmitri Nikshych)

[Show abstract] [Hide abstract]

**ABSTRACT:**We classify all fusion categories of rank 3 that admit a pivotal structure over an algebraically closed field of characteristic zero. Also in the Appendix (joint with D.Nikshych) we give some restrictions on Grothendieck rings of near-group categories.09/2013; - [Show abstract] [Hide abstract]

**ABSTRACT:**A subfactor is an inclusion $N \subset M$ of von Neumann algebras with trivial centers. The simplest example comes from the fixed points of a group action $M^G \subset M$, and subfactors can be thought of as fixed points of more general group-like algebraic structures. These algebraic structures are closely related to tensor categories and have played important roles in knot theory, quantum groups, statistical mechanics, and topological quantum field theory. There's a measure of size of a subfactor, called the index. Remarkably the values of the index below 4 are quantized, which suggests that it may be possible to classify subfactors of small index. Subfactors of index at most 4 were classified in the '80s and early '90s. The possible index values above 4 are not quantized, but once you exclude a certain family it turns out that again the possibilities are quantized. Recently the classification of subfactors has been extended up to index 5, and (outside of the infinite families) there are only 10 subfactors of index between 4 and 5. We give a summary of the key ideas in this classification and discuss what is known about these special small subfactors.04/2013;

Data provided are for informational purposes only. Although carefully collected, accuracy cannot be guaranteed. The impact factor represents a rough estimation of the journal's impact factor and does not reflect the actual current impact factor. Publisher conditions are provided by RoMEO. Differing provisions from the publisher's actual policy or licence agreement may be applicable.