Article

Cfp1 integrates both CpG content and gene activity for accurate H3K4me3 deposition in embryonic stem cells.

Wellcome Trust Centre for Cell Biology, University of Edinburgh, United Kingdom.
Genes & development (Impact Factor: 12.64). 08/2012; 26(15):1714-28. DOI: 10.1101/gad.194209.112
Source: PubMed

ABSTRACT Trimethylation of histone H3 Lys 4 (H3K4me3) is a mark of active and poised promoters. The Set1 complex is responsible for most somatic H3K4me3 and contains the conserved subunit CxxC finger protein 1 (Cfp1), which binds to unmethylated CpGs and links H3K4me3 with CpG islands (CGIs). Here we report that Cfp1 plays unanticipated roles in organizing genome-wide H3K4me3 in embryonic stem cells. Cfp1 deficiency caused two contrasting phenotypes: drastic loss of H3K4me3 at expressed CGI-associated genes, with minimal consequences for transcription, and creation of "ectopic" H3K4me3 peaks at numerous regulatory regions. DNA binding by Cfp1 was dispensable for targeting H3K4me3 to active genes but was required to prevent ectopic H3K4me3 peaks. The presence of ectopic peaks at enhancers often coincided with increased expression of nearby genes. This suggests that CpG targeting prevents "leakage" of H3K4me3 to inappropriate chromatin compartments. Our results demonstrate that Cfp1 is a specificity factor that integrates multiple signals, including promoter CpG content and gene activity, to regulate genome-wide patterns of H3K4me3.

Download full-text

Full-text

Available from: Thomas Clouaire, Jul 04, 2015
0 Followers
 · 
206 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chromatin regulation is a fundamental mechanism underlying stem cell pluripotency, differentiation, and the establishment of cell type-specific gene expression profiles. To examine the role of chromatin regulation in stem cells in vivo, we study regeneration in the freshwater planarian Schmidtea mediterranea. These animals possess a high concentration of pluripotent stem cells, which are capable of restoring any damaged or lost tissues after injury or amputation. Here, we identify the S. mediterranea homologs of the SET1/MLL family of histone methyltransferases and COMPASS and COMPASS-like complex proteins and investigate their role in stem cell function during regeneration. We identified six S. mediterranea homologs of the SET1/MLL family (set1, mll1/2, trr-1, trr-2, mll5-1 and mll5-2), characterized their patterns of expression in the animal, and examined their function by RNAi. All members of this family are expressed in the stem cell population and differentiated tissues. We show that set1, mll1/2, trr-1, and mll5-2 are required for regeneration and that set1, trr-1 and mll5-2 play roles in the regulation of mitosis. Most notably, knockdown of the planarian set1 homolog leads to stem cell depletion. A subset of planarian homologs of COMPASS and COMPASS-like complex proteins are also expressed in stem cells and implicated in regeneration, but the knockdown phenotypes suggest that some complex members also function in other aspects of planarian biology. This work characterizes the function of the SET1/MLL family in the context of planarian regeneration and provides insight into the role of these enzymes in adult stem cell regulation in vivo.
    Epigenetics: official journal of the DNA Methylation Society 12/2012; 8(1). DOI:10.4161/epi.23211 · 5.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: DNA methylation occurs at cytosines, predominantly in the CpG dinucleotide context and is a key epigenetic regulator of embryogenesis and stem-cell differentiation in mammals. The genomic patterns of 5-methylcytosine are extensively reprogrammed during early embryonic development as well as in the germ-cell lineage. Thanks to improvements in high-throughput mapping technologies, it is now possible to characterize the dynamics of this epigenetic mark at the genome scale. DNA methylation plays multiple roles during development and serves to establish long-term gene silencing. In 2009, it was revealed that 5-hydroxymethylcytosine (5hmC) is another prominent cytosine modification catalyzed by the enzymes of the TET family and abundant in certain cell types. 5hmC has been thought to serve as an intermediate in the reaction of DNA demethylation or act as a signal for chromatin factors. Here, we review the current knowledge on the roles of these DNA epigenetic marks in development, epigenetic reprogramming, and pluripotency.
    Current Topics in Developmental Biology 01/2013; 104:47-83. DOI:10.1016/B978-0-12-416027-9.00002-4 · 4.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Primordial germ cells (PGCs) are the embryonic precursors of the gametes and represent the founder cells of the germline. Specification of PGCs is a critical divergent point during embryogenesis. Whereas the somatic lineages will ultimately perish, cells of the germline have the potential to form a new individual and hence progress to the next generation. It is therefore critical that the genome emerges intact and carrying the appropriate epigenetic information during its passage through the germline. To ensure this fidelity of transmission, PGC development encompasses extensive epigenetic reprogramming. The low cell numbers and relative inaccessibility of PGCs present a challenge to those seeking mechanistic understanding of the crucial developmental and epigenetic processes in this most fascinating of lineages. Here, we present an overview of PGC development in the mouse and compare this with the limited information available for other mammalian species. We believe that a comparative approach will be increasingly important to uncover the extent to which mechanisms are conserved and reveal the critical steps during PGC development in humans.
    Current Topics in Developmental Biology 01/2013; 104:149-87. DOI:10.1016/B978-0-12-416027-9.00005-X · 4.21 Impact Factor