Article

A nuclear-derived proteinaceous matrix embeds the microtubule spindle apparatus during mitosis

Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011 Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461 Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal.
Molecular biology of the cell (Impact Factor: 5.98). 08/2012; 23(18):3532-41. DOI: 10.1091/mbc.E12-06-0429
Source: PubMed

ABSTRACT The concept of a spindle matrix has long been proposed. Whether such a structure exists, however, and what its molecular and structural composition are have remained controversial. In this study, using a live-imaging approach in Drosophila syncytial embryos, we demonstrate that nuclear proteins reorganize during mitosis to form a highly dynamic, viscous spindle matrix that embeds the microtubule spindle apparatus, stretching from pole to pole. We show that this "internal" matrix is a distinct structure from the microtubule spindle and from a lamin B-containing spindle envelope. By injection of 2000-kDa dextran, we show that the disassembling nuclear envelope does not present a diffusion barrier. Furthermore, when microtubules are depolymerized with colchicine just before metaphase the spindle matrix contracts and coalesces around the chromosomes, suggesting that microtubules act as "struts" stretching the spindle matrix. In addition, we demonstrate that the spindle matrix protein Megator requires its coiled-coil amino-terminal domain for spindle matrix localization, suggesting that specific interactions between spindle matrix molecules are necessary for them to form a complex confined to the spindle region. The demonstration of an embedding spindle matrix lays the groundwork for a more complete understanding of microtubule dynamics and of the viscoelastic properties of the spindle during cell division.

1 Follower
 · 
151 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Experiments dating from 1966 and thereafter showed that anaphase chromosomes continued to move poleward after their kinetochore microtubules were severed by ultraviolet microbeam irradiation. These observations were initially met with scepticism as they contradicted the prevailing view that kinetochore fibre microtubules pulled chromosomes to the pole. However, recent experiments using visible light laser microbeam irradiations have corroborated these earlier experiments as anaphase chromosomes again were shown to move poleward after their kinetochore microtubules were severed. Thus, multiple independent studies using different techniques have shown that chromosomes can indeed move poleward without direct microtubule connections to the pole, with only a kinetochore ‘stub’ of microtubules. An issue not yet settled is: what propels the disconnected chromosome? There are two not necessarily mutually exclusive proposals in the literature: (1) chromosome movement is propelled by the kinetochore stub interacting with non-kinetochore microtubules and (2) chromosome movement is propelled by a spindle matrix acting on the stub. In this review, we summarise the data indicating that chromosomes can move with severed kinetochore microtubules and we discuss proposed mechanisms for chromosome movement with severed kinetochore microtubules.
    Protoplasma 01/2015; DOI:10.1007/s00709-014-0752-7 · 3.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent reports show that, after nuclear envelope breakdown, lamin-B, a component of the nuclear lamina in interphase, localizes around the mitotic spindle as a membranous network. How this process occurs, however, and how it influences mitotic spindle morphogenesis is unclear. Here, we develop a computational model based on a continuum description to represent the abundance and location of various molecular species involved during mitosis, and use the model to test a number of hypotheses regarding the formation of the mitotic matrix. Our model illustrates that freely diffusible nuclear proteins can be captured and transported to the spindle poles by minus-end-directed microtubule (MT) motors. Moreover, simulations show that these proteins can be used to build a shell-like region that envelopes the mitotic spindle, which helps to improve the focusing of the mitotic spindle by spatially restricting MT polymerization and limiting the effective diffusion of the free MTs. Simulations also confirm that spatially dependent regulation of the spindle network through the Ran system improves spindle focusing and morphology. Our results agree with experimental observations that lamin-B reorganizes around the spindle and helps to maintain spindle morphology.
    Interface focus: a theme supplement of Journal of the Royal Society interface 06/2014; 4(3):20130063. DOI:10.1098/rsfs.2013.0063 · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The chromodomain protein, Chromator, is localized to chromosomes during interphase; however, during cell division together with other nuclear proteins Chromator redistributes to form a macro molecular spindle matrix complex that embeds the microtubule spindle apparatus. It has been demonstrated that the CTD of Chromator is sufficient for localization to the spindle matrix and that expression of this domain alone could partially rescue Chro mutant microtubule spindle defects. Furthermore, the presence of frayed and unstable microtubule spindles during mitosis after Chromator RNAi depletion in S2 cells indicated that Chromator may interact with microtubules. In this study using a variety of biochemical assays we have tested this hypothesis and show that Chromator not only has binding activity to microtubules with a Kd of 0.23 µM but also to free tubulin. Furthermore, we have mapped the interaction with microtubules to a relatively small stretch of 139 amino acids in the carboxy-terminal region of Chromator. This sequence is likely to contain a novel microtubule binding interface since database searches did not find any sequence matches with known microtubule binding motifs.
    PLoS ONE 07/2014; 9(7):e103855. DOI:10.1371/journal.pone.0103855 · 3.53 Impact Factor

Full-text (2 Sources)

Download
26 Downloads
Available from
May 30, 2014