Screening for Inhibitors of an Essential Chromatin Remodeler in Mouse Embryonic Stem Cells by Monitoring Transcriptional Regulation

1Department of Pathology and the Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
Journal of Biomolecular Screening (Impact Factor: 2.42). 08/2012; 17(9):1221-30. DOI: 10.1177/1087057112455060
Source: PubMed


The SWI/SNF-like adenosine triphosphate (ATP)-dependent chromatin remodeling complex, esBAF, is both necessary and, in some contexts, sufficient to induce the pluripotent state. Furthermore, mutations in various BAF subunits are associated with cancer. Little is known regarding the precise mechanism(s) by which this complex exerts its activities. Thus, it is unclear which protein interactions would be important to disrupt to isolate a relevant readout of mechanism. To address this, we developed a gene expression-based assay to identify inhibitors of the native esBAF complex. Specifically, a quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) assay was developed in mouse embryonic stem (ES) cells to monitor expression of Bmi1, a developmentally important gene repressed by the esBAF complex. The assay was miniaturized to a 384-well format and used to screen a diverse collection of compounds, including novel products of diversity-oriented synthesis (DOS). Confirmed hits were validated using a knock-in ES cell reporter line in which luciferase is inserted into the Bmi1 locus. Several of the validated hits regulate a panel of target genes in a manner similar to the BAF chromatin-remodeling complex. Together these data indicate that expression-based screening using qRT-PCR is a successful approach to identify compounds targeting the regulation of key developmental genes in ES cells.

Download full-text


Available from: Emily C Dykhuizen, Oct 11, 2015
21 Reads
  • Journal of Biomolecular Screening 10/2012; 17(9):E1-3. DOI:10.1177/1087057112463875 · 2.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The progression to advanced stage cancer requires changes in many characteristics of a cell. These changes are usually initiated through spontaneous mutation. As a result of these mutations, gene expression is almost invariably altered allowing the cell to acquire tumor-promoting characteristics. These abnormal gene expression patterns are in part enabled by the posttranslational modification and remodeling of nucleosomes in chromatin. These chromatin modifications are established by a functionally diverse family of enzymes including histone and DNA-modifying complexes, histone deposition pathways, and chromatin remodeling complexes. Because the modifications these enzymes deposit are essential for maintaining tumor-promoting gene expression, they have recently attracted much interest as novel therapeutic targets. One class of enzyme that has not generated much interest is the chromatin remodeling complexes. In this review, we will present evidence from the literature that these enzymes have both causal and enabling roles in the transition to advanced stage cancers; as such, they should be seriously considered as high-value therapeutic targets. Previously published strategies for discovering small molecule regulators to these complexes are described. We close with thoughts on future research, the field should perform to further develop this potentially novel class of therapeutic target.
    Advances in Cancer Research 06/2014; 121:183-233. DOI:10.1016/B978-0-12-800249-0.00005-6 · 5.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A strategy for generating diverse collections of small molecules has been developed that features a multicomponent assembly process (MCAP) to efficiently construct a variety of intermediates possessing an aryl aminomethyl subunit. These key compounds are then transformed via selective ring-forming reactions into heterocyclic scaffolds, each of which possesses suitable functional handles for further derivatizations and palladium-catalyzed cross coupling reactions. The modular nature of this approach enables the facile construction of libraries of polycyclic compounds bearing a broad range of substituents and substitution patterns for biological evaluation. Screening of several compound libraries thus produced has revealed a large subset of compounds that exhibit a broad spectrum of medicinally-relevant activities.
    Organic & Biomolecular Chemistry 08/2014; 12(39). DOI:10.1039/c4ob00835a · 3.56 Impact Factor
Show more