NPM-ALK: The Prototypic Member of a Family of Oncogenic Fusion Tyrosine Kinases

Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada T6G 2E1.
Journal of signal transduction 07/2012; 2012:123253. DOI: 10.1155/2012/123253
Source: PubMed


Anaplastic lymphoma kinase (ALK) was first identified in 1994 with the discovery that the gene encoding for this kinase was involved in the t(2;5)(p23;q35) chromosomal translocation observed in a subset of anaplastic large cell lymphoma (ALCL). The NPM-ALK fusion protein generated by this translocation is a constitutively active tyrosine kinase, and much research has focused on characterizing the signalling pathways and cellular activities this oncoprotein regulates in ALCL. We now know about the existence of nearly 20 distinct ALK translocation partners, and the fusion proteins resulting from these translocations play a critical role in the pathogenesis of a variety of cancers including subsets of large B-cell lymphomas, nonsmall cell lung carcinomas, and inflammatory myofibroblastic tumours. Moreover, the inhibition of ALK has been shown to be an effective treatment strategy in some of these malignancies. In this paper we will highlight malignancies where ALK translocations have been identified and discuss why ALK fusion proteins are constitutively active tyrosine kinases. Finally, using ALCL as an example, we will examine three key signalling pathways activated by NPM-ALK that contribute to proliferation and survival in ALCL.

Download full-text


Available from: Jason K. H. Lee, Apr 13, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lung cancer is the number one cause of cancer related mortality with over 1 million cancer deaths worldwide. Numerous therapies have been developed for the treatment of lung cancer including radiation, cytotoxic chemotherapy and targeted therapies. Histology, stage of presentation and molecular aberrations are main determinants of prognosis and treatment strategy. Despite the advances that have been made, overall prognosis for lung cancer patients remains dismal. Chemotherapy and/or targeted therapy yield objective response rates of about 35% to 60% in advanced stage non-small cell lung cancer (NSCLC). Even with good initial responses, median overall survival of is limited to about 12 months. This reflects that current therapies are not universally effective and resistance develops quickly. Multiple mechanisms of resistance have been proposed and the MET/HGF axis is a potential key contributor. The proto-oncogene MET (mesenchymal-epithelial transition factor gene) and its ligand hepatocyte growth factor (HGF) interact and activate downstream signaling via the mitogen-activated protein kinase (ERK/MAPK) pathway and the phosphatidylinositol 3-kinase (PI3K/AKT) pathways that regulate gene expression that promotes carcinogenesis. Aberrant MET/HGF signaling promotes emergence of an oncogenic phenotype by promoting cellular proliferation, survival, migration, invasion and angiogenesis. The MET/HGF axis has been implicated in various tumor types including lung cancers and is associated with adverse clinicopathological profile and poor outcomes. The MET/HGF axis plays a major role in development of radioresistance and chemoresistance to platinums, taxanes, camtothecins and anthracyclines by inhibiting apoptosis via activation of PI3K-AKT pathway. DNA damage from these agents induces MET and/or HGF expression. Another resistance mechanism is inhibition of chemoradiation induced translocation of apoptosis-inducing factor (AIF) thereby preventing apoptosis. Furthermore, this MET/HGF axis interacts with other oncogenic signaling pathways such as the epidermal growth factor receptor (EGFR) pathway and the vascular endothelial growth factor receptor (VEGFR) pathway. This functional cross-talk forms the basis for the role of MET/HGF axis in resistance against anti-EGFR and anti-VEGF targeted therapies. MET and/or HGF overexpression from gene amplification and activation are mechanisms of resistance to cetuximab and EGFR-TKIs. VEGF inhibition promotes hypoxia induced transcriptional activation of MET proto-oncogene that promotes angiogenesis and confers resistance to anti-angiogenic therapy. An extensive understanding of these resistance mechanisms is essential to design combinations with enhanced cytotoxic effects. Lung cancer treatment is challenging. Current therapies have limited efficacy due to primary and acquired resistance. The MET/HGF axis plays a key role in development of this resistance. Combining MET/HGF inhibitors with chemotherapy, radiotherapy and targeted therapy holds promise for improving outcomes.
    09/2012; 1(3):179-93. DOI:10.3978/j.issn.2218-6751.2012.09.04
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The initial response of lymphoid malignancies to glucocorticoids (GCs) is a critical parameter predicting successful treatment. Although being known as a strong inducer of apoptosis in lymphoid cells for almost a century, the signaling pathways regulating the susceptibility of the cells to GCs are only partly revealed. There is still a need to develop clinical tests that can predict the outcome of GC therapy. In this paper, I discuss important parameters modulating the pro-apoptotic effects of GCs, with a specific emphasis on the microRNA world comprised of small players with big impacts. The journey through the multifaceted complexity of GC-induced apoptosis brings forth explanations for the differential treatment response and raises potential strategies for overcoming drug resistance.
    01/2013; 2013(13):348212. DOI:10.1155/2013/348212
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The discovery of several molecular alterations that underlie non-small cell lung cancer (NSCLC) pathogenesis has led to the development of targeted therapies. In particular, gefitinib and erlotinib have become the standard of care in patients harboring epidermal growth factor receptor mutations, while crizotinib showed an impressive efficacy in patients with ALK-positive NSCLC. Nevertheless, the occurrence of clinical resistance limits the long term results of these novel agents. The identification of the molecular mechanisms responsible for acquired resistance to targeted therapy is crucial in order to pursue the creation of rational strategies to overcome resistance. In the current review, we will focus on the acquired resistance mechanisms to EGFR-TKIs and crizotinib and the therapeutic strategies currently under study to overcome resistance.
    Lung cancer (Amsterdam, Netherlands) 06/2013; 81(3). DOI:10.1016/j.lungcan.2013.05.020 · 3.96 Impact Factor
Show more

We use cookies to give you the best possible experience on ResearchGate. Read our cookies policy to learn more.