Asthma as a chronic disease of the innate and adaptive immune systems responding to viruses and allergens.

Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
The Journal of clinical investigation (Impact Factor: 13.77). 08/2012; 122(8):2741-8. DOI: 10.1172/JCI60325
Source: PubMed

ABSTRACT Research on the pathogenesis of asthma has traditionally concentrated on environmental stimuli, genetic susceptibilities, adaptive immune responses, and end-organ alterations (particularly in airway mucous cells and smooth muscle) as critical steps leading to disease. The focus of this cascade has been the response to allergic stimuli. An alternative scheme suggests that respiratory viruses and the consequent response of the innate immune system also drives the development of asthma as well as related inflammatory diseases. This conceptual shift raises the possibility that sentinel cells such as airway epithelial cells, DCs, NKT cells, innate lymphoid cells, and macrophages also represent critical components of asthma pathogenesis as well as new targets for therapeutic discovery. A particular challenge will be to understand and balance the innate as well as the adaptive immune responses to defend the host against acute infection as well as chronic inflammatory disease.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, we have highlighted the immunomodulatory activity of the standardized extracts of Phyllanthus amarus and P. urinaria. The present study was carried out to correlate between the prevalent constituents of the herbs and their inhibitory effects on phagocytic activity of human neutrophils. The compounds, gallic acid, ellagic acid, corilagin, geraniin, phyllanthin and hypophyllanthin were identified and quantitatively analyzed in the extracts of Phyllanthus amarus and P. urinaria obtained from Malaysia and Indonesia by using a validated reversed phase high performance liquid chromatography (RP-HPLC) method. The standardized extracts and the pure compounds were evaluated for their effects on chemotaxis, β2 integrin (CD18) expression, phagocytosis and chemiluminescence of human phagocytes. Chemotactic activity was assessed using the Boyden chamber technique, inhibition of CD18 expression and phagocytic ability were tested with the aid of flow cytometry, while effect on the respiratory burst was investigated using a luminol-based chemiluminescence assay. All plant extracts strongly inhibited migration of the phagocytes with the Malaysian P. amarus depicting the highest inhibitory activity. Amongst the compounds tested, geraniin demonstrated the strongest inhibitory activity on chemotaxis of polymorphonuclear leukocytes (PMNs) and monocytes with IC50 values of 1.09 and 1.69 μM, respectively, which were lower than that of ibuprofen. All plant extracts and pure compounds exhibited high inhibitory activity on the oxidative burst of zymosan and PMA stimulated leukocytes. Geraniin and corilagin exhibited exceptionally strong inhibition on the reactive oxygen species (ROS) activity with IC50 values lower than aspirin. The plant extracts exhibited moderate inhibition of E. coli uptake by monocytes but weak effect on PMNs. Of all the compounds, phyllanthin at 50 μg/mL exhibited the highest engulfment inhibitory activity with percentage of phagocytizing cells of 14.2 and 27.1% for PMNs and monocytes, respectively. All plants and compounds tested possessed weak effect on CD18 expression on leukocytes except for hypophyllanthin and phyllanthin which exhibited significant inhibitory effect. The strong inhibition of the extracts on the phagocytic activity of neutrophils was due to the presence of their major constituents especially geraniin, corilagin, phyllanthin and hypophllanthin which were able to modulate the innate response of phagocytes at different steps.
    BMC Complementary and Alternative Medicine 12/2014; 14(1):2006. DOI:10.1186/1472-6882-14-429 · 1.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Surfactant protein D (SP-D), a pattern recognition molecule, has been shown to play roles in host defense such as opsonisation, aggregation of pathogens, and modulation of the inflammatory response. In light of infection-induced exacerbations and damage to the airway epithelium from inflammation, these functions of SP-D make it relevant in the development and pathogenesis of asthma. Methods Expression of SP-D was examined in human airway sections and primary airway epithelial cells (AEC) grown in air-liquid interface (ALI) cultures and comparisons were made between those from asthmatic and non-asthmatic donors. ALI cultures of AEC from non-asthmatic donors were examined for SP-D, Mucin 5AC, and cytokeratin-5 expression at different stages of differentiation. Interleukin-13 (IL-13) treatment of airway epithelium and its effect on SP-D expression was studied using ALI and monolayer cultures of primary AEC from non-asthmatic and asthmatic donors. Results Airway epithelium of asthmatics, compared to that of non-asthmatics, expressed increased levels of SP-D as demonstrated in airway tissue sections (fraction of epithelium 0.66 ± 0.026 vs. 0.50 ± 0.043, p = 0.004) and ALI cultures (fraction of epithelium 0.50 ± 0.08 vs. 0.25 ± 0.07). SP-D expression decreased as ALI cultures differentiated from 7 days to 21 days (fraction of epithelium 0.62 ± 0.04 to 0.23 ± 0.03, p = 0.004). Treatment with IL-13 decreased SP-D expression in both ALI cultures (fraction of epithelium 0.21 ± 0.06 vs. 0.62 ± 0.04, p = 0.0005) and monolayer cultures (protein expression fold change 0.62 ± 0.05) of non-asthmatic AEC; however, IL-13 had no significant effect on SP-D expression in monolayer cultures of asthmatic AEC. Experiments with non-asthmatic monolayer cultures indicate IL-13 exert its effect on SP-D through the IL-13 receptor alpha1 and transcription factor STAT6. Conclusions SP-D is expressed differently in airways of asthmatics relative to that of non-asthmatics. This can have implications on the increased susceptibility to infections and altered inflammatory response in asthmatic patients. Future functional studies on the role of SP-D in asthma can provide better insight into defects in the structure and regulation of SP-D. Electronic supplementary material The online version of this article (doi:10.1186/s12931-015-0177-7) contains supplementary material, which is available to authorized users.
    Respiratory Research 12/2015; 16(1). DOI:10.1186/s12931-015-0177-7 · 3.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Early life respiratory viral infections and atopic characteristics are significant risk factors for the development of childhood asthma. It is hypothesized that repeated respiratory viral infections might induce structural remodeling by interfering with the normal process of lung maturation; however, the specific molecular processes that underlie these pathological changes are not understood. To investigate the molecular basis for these changes, we used an established Sendai virus infection model in weanling rats to compare the post-infection transcriptomes of an atopic asthma susceptible strain, Brown Norway, and a non-atopic asthma resistant strain, Fischer 344. Specific to this weanling infection model and not described in adult infection models, Sendai virus in the susceptible, but not the resistant strain, results in morphological abnormalities in distal airways that persist into adulthood. Gene expression data from infected and control lungs across five time points indicated that specific features of the immune response following viral infection were heightened and prolonged in lungs from Brown Norway rats compared with Fischer 344 rats. These features included an increase in macrophage cell number and related gene expression, which then transitioned to an increase in mast cell number and related gene expression. In contrast, infected Fischer F344 lungs exhibited more efficient restoration of the airway epithelial morphology, with transient appearance of basal cell pods near distal airways. Together, these findings indicate that the pronounced macrophage and mast cell responses and abnormal re-epithelialization precede the structural defects that developed and persisted in Brown Norway, but not Fischer 344 lungs.
    PLoS ONE 12/2014; 9(12):e112997. DOI:10.1371/journal.pone.0112997 · 3.53 Impact Factor