Induced and natural regulatory T cells in human cancer.

University of Pittsburgh Cancer Institute, Pathology, Hillman Cancer Center , 5117 Centre Ave, Pittsburgh, 15213, USA .
Expert opinion on biological therapy (Impact Factor: 3.22). 07/2012; 12(10):1383-97. DOI: 10.1517/14712598.2012.707184
Source: PubMed

ABSTRACT Introduction: Evidence suggests that FOXP3(+)CD25(high)CD4(+) regulatory T cells (Treg) which accumulate in cancer may have beneficial or unfavorable effects on prognosis. The presence in tumor-associated inflammatory infiltrates of two subsets of Treg with distinct phenotypic and functional profiles might explain these conflicting observations. Areas covered: Human inducible (i) Treg arising by tumor-driven conversion of conventional CD4(+) T cells are highly suppressive, therapy-resistant Treg which down-regulate anti-tumor immune responses, promoting tumor growth. Natural (n) Treg, normally responsible for maintaining peripheral tolerance, control cancer-associated inflammation, which favors tumor progression. This division of labor between nTreg and iTreg is not absolute, and overlap may be common. Nevertheless, iTreg play a critical and major role in cancer and cancer therapy. The tumor microenvironment determines the type, frequency and suppression levels of accumulating Treg. Expert opinion: In cancer, a selective removal or silencing of iTreg and not of nTreg should be a therapeutic goal. However, the implementation of this challenging strategy requires further studies of cellular and molecular crosstalk among immune cells in the tumor microenvironment.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: The role of regulatory T cells, (Treg) in human cancer and HIV-1 infections has been under intense scrutiny. While the lack of a marker specific for human Treg has made it challenging to phenotype these cells, combinations of several markers and functional attributes of Treg have made it possible to assess their contributions to immune homeostasis in health and disease. Treg diversity and their plasticity create a challenge in deciding whether they are beneficial to the host by down-regulating excessive immune activation or are responsible for adverse effects such as suppression of anti-tumor immune responses resulting in promotion of tumor growth. Treg are emerging as active participants in several biochemical pathways involved in immune regulation. This review attempts to integrate current information about human Treg in respect to their activities in cancer and HIV-1. The goal is to evaluate the potential of Treg as targets for future immune or pharmacologic therapies for cancer or HIV-1 infections.
    Cancer Microenvironment 11/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endothelial progenitor cells (EPCs) may be recruited from bone marrow to sustain the metastatic switch in a number of solid cancers, including breast cancer (BC) and renal cellular carcinoma (RCC). Preventing EPC mobilization causes tumor shrinkage. Novel anti-angiogenic treatments have been introduced in therapy to inhibit VEGFR-2 signaling; unfortunately, these drugs blocked tumor angiogenesis in pre-clinical murine models, but resulted far less effective in human patients. Understanding the molecular mechanisms driving EPC proliferation and tubulogenesis in cancer patients could outline novel targets for alternative anti-angiogenic treatments. Store-operated Ca(2+) entry (SOCE) regulates the growth of human EPCs, and it is mediated by the interaction between the endoplasmic reticulum Ca(2+)-sensor, Stim1, and the plasmalemmal Ca(2+) channels, Orai1 and TRPC1. EPCs do not belong to the neoplastic clone: thus, unlike tumor endothelium and neoplastic cells, they should not remodel their Ca(2+) toolkit in response to tumor microenvironment. However, our recent work demonstrated that EPCs isolated from naïve RCC patients (RCC-EPCs) undergo a dramatic remodeling of their Ca(2+) toolkit by displaying a remarkable drop in the endoplasmic reticulum Ca(2+) content, by down-regulating the expression of inositol-1,4,5-receptors (InsP3Rs), and by up-regulating Stim1, Orai1 and TRPC1. Moreover, EPCs are dramatically less sensitive to VEGF stimulation both in terms of Ca(2+) signaling and of gene expression when isolated from tumor patients. Conversely, the pharmacological abolition of SOCE suppresses proliferation in these cells. These results question the suitability of VEGFR-2 as a therapeutically relevant target for anti-angiogenic treatments and hint at Orai1 and TRPC1 as more promising alternatives. This article is part of a Special Issue entitled: 13th European Symposium on Calcium. Copyright © 2014 Elsevier B.V. All rights reserved.
    Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 10/2014; · 5.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Patients with glioblastoma multiforme (GBM) exhibit marked intratumoral and systemic immunosuppression. GBM is heavily infiltrated with monocytic cells. Monocytes contacting GBM cells develop features of immunosuppressive myeloid-derived suppressor cells (MDSCs), which are elevated in GBM patients. Therefore, we hypothesized that circulating MDSC levels could be raised in vivo by increasing glioma-associated macrophages. GL261-luciferase glioma was implanted intracranially in C57BL/6 mice with or without additional normal syngeneic CD11b+ monocytes. Tumor growth and intratumoral and systemic MDSC (CD11b+/Gr-1+) levels were determined. Green fluorescent protein (GFP)-transgenic monocytes were coinjected intracranially with GL261-luciferase cells. GFP+ cell frequency among splenic and bone marrow MDSCs was determined. Impact of increased MDSC's on spontaneous immune responses to tumor cells expressing a model antigen (ovalbumin [OVA]) was determined. Tumors grew faster and MDSC's were increased in tumor, spleen, and bone marrow in mice receiving GL261-Luc plus monocytes. Many (30%-50%) systemic MDSC's were GFP+ in mice receiving intracranial tumor plus GFP-transgenic monocytes, suggesting that they originated from glioma-associated monocytes. Tumor-infiltrating OVA-specific CD8+ T cells were markedly reduced in mice receiving GL261-OVA and monocytes compared with mice receiving GL261-OVA alone. Increasing glioma-associated macrophages in intracranial GL261 glioma decreases survival and markedly increases intratumoral and systemic MDSC's, many of which originate directly from glioma-associated macrophages. This is associated with decreased spontaneous immune responses to a model antigen. To our knowledge, this is the first evidence in cancer that systemic MDSC's can arise directly from normal monocytes that have undergone intratumoral immunosuppressive education. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail:
    Neuro-Oncology 12/2014; · 5.29 Impact Factor