Article

Assessment of Potential Orthodontic Mini-implant Insertion Sites Based on Anatomical Hard Tissue Parameters: A Systematic Review.

The International journal of oral & maxillofacial implants (Impact Factor: 1.49). 07/2012; 27(4):875-87.
Source: PubMed

ABSTRACT Purpose: To estimate the applicability of potential sites for insertion of orthodontic mini-implants (OMIs) by a systematic review of studies that used computed tomography (CT) or cone beam CT to evaluate anatomical bone quality and quantity parameters, such as bone thickness, available space, and bone density. Materials and Methods: Medline and the Cochrane Database of Systematic Reviews were searched to identify all relevant papers. Several key words were used, such as computerized/computed tomography, mini-implants, and OMIs. The anatomical variables that were assigned in each article to a specific site suggesting it as the ideal or best alternative were assessed separately and evaluated with a scoring system. Results: Twenty-two articles were included in the study. The most favorable areas for OMI insertion in the maxilla are proposed between the first and second molars buccally and palatally. The best area in the mandible is also between the first and second molars, both buccally and lingually. In the palate, the paramedian area 3 to 6 mm posterior to and 2 to 9 mm lateral to the incisive foramen was identified as the best site for OMI placement. Conclusions: Despite the heterogeneity of the studies, there was considerable agreement regarding the optimal site for OMI insertion among most studies that investigated anatomical hard tissue parameters based on CT or CBCT data. In this respect, the posterior area from the second premolar to the second molar is the best option for OMI placement in alveolar bone.

0 Bookmarks
 · 
63 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objectives: Orthodontic mini implants can be inserted at the interradicular site. The bone quality at this site may affect the stability and anchorage of the implant. Bone density is clinically evaluated by Hounsfield units (HU) obtained from cone beam CT (CBCT). The objective of this study was to determine the correlations between HU, microhardness and cortical bone thickness of interradicular site at various segments (anterior/posterior) and aspects (buccal/lingual) of both jaws in a swine model.Materials and methods: Eight mandible and maxilla swine bones were scanned by CBCT. The HU and thickness of the above-mentioned sites were determined. Then, a Knoop microhardness test was applied and the Knoop Hardness Number was obtained (KHN). The mandible parameters spread over a wider range than the maxilla. The buccal aspect of the maxilla had higher HU and KHN values than the mandible. The lingual aspect of the mandible had higher KHN values than the maxilla. Posterior segments had higher HU and KHN values. The thickness of the alveolar cortical bone was greater in the maxilla than in the mandible. Correlations were found between HU and KHN for 3 of the 4 sites (anterior or posterior, buccal or lingual) of the mandible only. No correlations were found for the maxilla. Upon pooling the HU and KHN data for the whole jaw, correlation was found for the maxilla as well. Relying on HU values as a predictor of cortical bone hardness should be considered with caution.
    Head & Face Medicine 04/2014; 10(1):12. · 0.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the survey was to obtain information on the treatment plan preferences, mechanics and characteristics of temporary anchorage device (TAD) application using a single case presented to orthodontists in Switzerland.
    Progress in orthodontics. 01/2014; 15(1):29.