Article

Anti-inflammatory effects of epoxyeicosatrienoic acids.

Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
International journal of vascular medicine 01/2012; 2012:605101. DOI: 10.1155/2012/605101
Source: PubMed

ABSTRACT Epoxyeicosatrienoic acids (EETs) are generated by the activity of both selective and also more general cytochrome p450 (CYP) enzymes on arachidonic acid and inactivated largely by soluble epoxide hydrolase (sEH), which converts them to their corresponding dihydroxyeicosatrienoic acids (DHETs). EETs have been shown to have a diverse range of effects on the vasculature including relaxation of vascular tone, cellular proliferation, and angiogenesis as well as the migration of smooth muscle cells. This paper will highlight the growing evidence that EETs also mediate a number of anti-inflammatory effects in the cardiovascular system. In particular, numerous studies have demonstrated that potentiation of EET activity using different methods can inhibit inflammatory gene expression and signalling pathways in endothelial cells and monocytes and in models of cardiovascular diseases. The mechanisms by which EETs mediate their effects are largely unknown but may include direct binding to peroxisome proliferator-activated receptors (PPARs), G-protein coupled receptors (GPCRs), or transient receptor potential (TRP) channels, which initiate anti-inflammatory signalling cascades.

0 Bookmarks
 · 
144 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cytochrome P450 (P450) enzymes are a superfamily of heme-containing enzymes involved in the metabolism of various endogenous compounds, including retinoids, glucocorticoids, and eicosanoids, that are postulated to participate in the maintenance and/or development of inflammatory and immune reactions in the intestinal mucosa. To investigate the role of P450 enzymes in intestinal inflammation and immunity, we took advantage of IE-Cpr-null mice, which are deficient in intestinal epithelium of NADPH-cytochrome P450 reductase (CPR), the obligate redox partner of all microsomal P450 enzymes. We report that IE-Cpr-null mice, following an acute toxin challenge, had higher levels of pro-inflammatory chemokines and increased tissue damage compared to wild-type mice. IE-Cpr-null mice had normal Peyer's patch numbers and elicited normal secretory IgA (SIgA) responses. However, SIgA baseline levels in IE-Cpr-null mice were consistently elevated over WT littermates. While neither retinoic acid nor glucocorticoid levels in serum and intestinal homogenates were altered in IE-Cpr-null mice, basal levels of arachidonic acid metabolites (11,12-DiHETE and 14,15-DiHETE) with known anti-inflammatory property were significantly lower compared to WT controls. Overall, these findings reveal immunological and metabolic changes resulting from a genetic deficiency in CPR expression in the intestine, and support a role for microsomal P450 enzymes in mucosal homeostasis and immunity.
    Scientific reports. 01/2014; 4:5551.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oxidized low-density lipoprotein (Ox-LDL) is associated with atherosclerotic events through the modulation of arachidonic acid (AA) metabolism and activation of inflammatory signaling. Cytochrome P450 (CYP) epoxygenase-derived epoxyeicosatrienoic acids (EETs) mitigate inflammation through nuclear factor-κB (NF-κB). In this study, we explored the effects and mechanisms of exogenous EETs on the ox-LDL-induced inflammation of pulmonary artery endothelial cells (PAECs), which were cultured from rat pulmonary arteries. We determined that pre-treatment with 11,12-EET or 14,15-EET attenuated the ox-LDL-induced expression and release of intercellular adhesion molecule-1 (ICAM-1), E-selectin, and monocyte chemoattractant protein-1 (MCP-1) in a concentration-dependent manner. In addition, the ox-LDL-induced expression of CYP2J4 was upregulated by 11,12-EET and 14,15-EET (1μM). Furthermore, the endothelial receptor of lectin-like oxidized low-density lipoprotein (LOX-1) was downregulated in PAECs treated with EETs. The inflammatory responses evoked by ox-LDL (100μg/mL) were blocked by pharmacological inhibitors of Erk1/2 mitogen-activated protein kinase (MAPK) (U0126), p38 MAPK (SB203580), and NF-κB (PDTC). In addition, we confirmed that 11,12-EET suppresses phosphorylation of p38, degradation of IκBα, and activation of NF-κB (p65), whereas 14,15-EET can significantly suppress the phosphorylation of p38 and Erk1/2. Our results indicate that EETs exert beneficial effects on ox-LDL-induced inflammation primarily through the inhibition of LOX-1 receptor upregulation, MAPK phosphorylation, and NF-κB activation and through the upregulation of CYP2J4 expression. This study helps focus the current understanding of the contribution of EETs to the regulation of the inflammation of pulmonary vascular endothelial cells. Furthermore, the therapeutic potential of targeting the EET pathway in pulmonary vascular disease will be highlighted.
    European journal of pharmacology 01/2014; · 2.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cytochrome P450s (CYPs) represent a highly divergent class of enzymes involved in the oxidation of organic compounds. A subgroup of CYPs metabolize ω3-arachidonic and linoleic acids and ω6-docosahexaenoic and eicosapentaenoic polyunsaturated fatty acids (PUFAs) into a series of related biologically active mediators. Over the past 20 years, increasing evidence has emerged for a role of these PUFA-derived mediators in physiological and pathophysiological processes in the vasculature, during inflammation, and in the regulation of metabolism. With recent technological advances and increased availability of lipid mass spectroscopy, we are now starting to discern the patterns of these CYP-PUFA products in health and disease. These analyses are revealing not only the diverse spectrum of lipid nutrients regulated by CYPs, but also clearly indicate that the balance of these mediators changes with dietary intake of different PUFA classes. These findings suggest that we are only just beginning to understand all of the relevant lipid species produced by CYP pathways. Moreover, we are still a long way from understanding the nature and presence of their receptors, their tissue expression, and the pathophysiological processes they regulate. This review highlights these future issues in the context of lipid-metabolizing CYP enzymes, focusing particularly on the CYP450 family of epoxygenases and the lipid mediators they produce. Expected final online publication date for the Annual Review of Nutrition Volume 34 is July 17, 2014. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
    Annual Review of Nutrition 04/2014; · 9.16 Impact Factor

Full-text (2 Sources)

Download
54 Downloads
Available from
May 27, 2014