Article

Anti-Inflammatory Effects of Epoxyeicosatrienoic Acids

Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
International journal of vascular medicine 07/2012; 2012:605101. DOI: 10.1155/2012/605101
Source: PubMed

ABSTRACT Epoxyeicosatrienoic acids (EETs) are generated by the activity of both selective and also more general cytochrome p450 (CYP) enzymes on arachidonic acid and inactivated largely by soluble epoxide hydrolase (sEH), which converts them to their corresponding dihydroxyeicosatrienoic acids (DHETs). EETs have been shown to have a diverse range of effects on the vasculature including relaxation of vascular tone, cellular proliferation, and angiogenesis as well as the migration of smooth muscle cells. This paper will highlight the growing evidence that EETs also mediate a number of anti-inflammatory effects in the cardiovascular system. In particular, numerous studies have demonstrated that potentiation of EET activity using different methods can inhibit inflammatory gene expression and signalling pathways in endothelial cells and monocytes and in models of cardiovascular diseases. The mechanisms by which EETs mediate their effects are largely unknown but may include direct binding to peroxisome proliferator-activated receptors (PPARs), G-protein coupled receptors (GPCRs), or transient receptor potential (TRP) channels, which initiate anti-inflammatory signalling cascades.

0 Followers
 · 
165 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although ischemic stroke is a major cause of death and disability worldwide, only a small fraction of patients benefits from the current thrombolytic therapy due to a risk of cerebral hemorrhage caused by inflammation. Thus, the development of a new strategy to combat inflammation during thrombolysis is an urgent demand. The small-molecule thrombolytic SMTP-7 effectively treats ischemic stroke in several animal models with reducing cerebral hemorrhage. Here, we revealed that SMTP-7 targeted soluble epoxide hydrolase (sEH) to suppress inflammation. SMTP-7 inhibited both of the two sEH enzyme activities: epoxide hydrolase (which inactivates anti-inflammatory epoxy-fatty acids) and lipid phosphate phosphatase. SMTP-7 suppressed epoxy-fatty acid hydrolysis in HepG2 cells in culture, implicating the sEH inhibition in the anti-inflammatory mechanism. The sEH inhibition by SMTP-7 was independent of its thrombolytic activity. The simultaneous targeting of thrombolysis and sEH by a single molecule is a promising strategy to revolutionize the current stroke therapy.
    Journal of Biological Chemistry 10/2014; 289(52). DOI:10.1074/jbc.M114.588087 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lipid derived mediators contribute to inflammation and the sensing of pain. The contributions of omega-6 derived prostanoids in enhancing inflammation and pain sensation are well known. Less well explored are the opposing anti-inflammatory and analgesic effects of the omega-6 derived epoxyeicosatrienoic acids. Far less has been described about the epoxidized metabolites derived from omega-3 long chain fatty acids. The epoxide metabolites are turned over rapidly with enzymatic hydrolysis by the soluble epoxide hydrolase being the major elimination pathway. Despite this, the overall understanding of the role of lipid mediators in the pathology of chronic pain is growing. Here we review the role of long chain fatty acids and their metabolites in alleviating both acute and chronic pain conditions. We focus specifically on the epoxidized metabolites of omega-6 and omega-3 long chain fatty acids as well as a novel strategy to modulate their activity in vivo.
    Prostaglandins & other lipid mediators 09/2014; 113. DOI:10.1016/j.prostaglandins.2014.09.001 · 2.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cytochrome P450 (P450) enzymes are a superfamily of heme-containing enzymes involved in the metabolism of various endogenous compounds, including retinoids, glucocorticoids, and eicosanoids, that are postulated to participate in the maintenance and/or development of inflammatory and immune reactions in the intestinal mucosa. To investigate the role of P450 enzymes in intestinal inflammation and immunity, we took advantage of IE-Cpr-null mice, which are deficient in intestinal epithelium of NADPH-cytochrome P450 reductase (CPR), the obligate redox partner of all microsomal P450 enzymes. We report that IE-Cpr-null mice, following an acute toxin challenge, had higher levels of pro-inflammatory chemokines and increased tissue damage compared to wild-type mice. IE-Cpr-null mice had normal Peyer's patch numbers and elicited normal secretory IgA (SIgA) responses. However, SIgA baseline levels in IE-Cpr-null mice were consistently elevated over WT littermates. While neither retinoic acid nor glucocorticoid levels in serum and intestinal homogenates were altered in IE-Cpr-null mice, basal levels of arachidonic acid metabolites (11,12-DiHETE and 14,15-DiHETE) with known anti-inflammatory property were significantly lower compared to WT controls. Overall, these findings reveal immunological and metabolic changes resulting from a genetic deficiency in CPR expression in the intestine, and support a role for microsomal P450 enzymes in mucosal homeostasis and immunity.
    Scientific Reports 07/2014; 4:5551. DOI:10.1038/srep05551 · 5.08 Impact Factor

Full-text (3 Sources)

Download
68 Downloads
Available from
May 27, 2014