The “Most Wanted” Taxa from the Human Microbiome for Whole Genome Sequencing

Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America.
PLoS ONE (Impact Factor: 3.53). 07/2012; 7(7):e41294. DOI: 10.1371/journal.pone.0041294
Source: PubMed

ABSTRACT The goal of the Human Microbiome Project (HMP) is to generate a comprehensive catalog of human-associated microorganisms including reference genomes representing the most common species. Toward this goal, the HMP has characterized the microbial communities at 18 body habitats in a cohort of over 200 healthy volunteers using 16S rRNA gene (16S) sequencing and has generated nearly 1,000 reference genomes from human-associated microorganisms. To determine how well current reference genome collections capture the diversity observed among the healthy microbiome and to guide isolation and future sequencing of microbiome members, we compared the HMP's 16S data sets to several reference 16S collections to create a 'most wanted' list of taxa for sequencing. Our analysis revealed that the diversity of commonly occurring taxa within the HMP cohort microbiome is relatively modest, few novel taxa are represented by these OTUs and many common taxa among HMP volunteers recur across different populations of healthy humans. Taken together, these results suggest that it should be possible to perform whole-genome sequencing on a large fraction of the human microbiome, including the 'most wanted', and that these sequences should serve to support microbiome studies across multiple cohorts. Also, in stark contrast to other taxa, the 'most wanted' organisms are poorly represented among culture collections suggesting that novel culture- and single-cell-based methods will be required to isolate these organisms for sequencing.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human-associated microbes are the source of many bioactive microbial products (proteins and metabolites) that play key functions both in human host pathways and in microbe-microbe interactions. Culture-independent studies now provide an accelerated means of exploring novel bioactives in the human microbiome; however, intriguingly, a substantial fraction of the microbial metagenome cannot be mapped to annotated genes or isolate genomes and is thus of unknown function. Meta’omic approaches, including metagenomic sequencing, metatranscriptomics, metabolomics, and integration of multiple assay types, represent an opportunity to efficiently explore this large pool of potential therapeutics. In combination with appropriate follow-up validation, high-throughput culture-independent assays can be combined with computational approaches to identify and characterize novel and biologically interesting microbial products. Here we briefly review the state of microbial product identification and characterization and discuss possible next steps to catalog and leverage the large uncharted fraction of the microbial metagenome.
    Cell Metabolism 11/2014; 20(5):731-741. DOI:10.1016/j.cmet.2014.10.003 · 16.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Culture-independent methods in microbiology (quantitative PCR (qPCR), sequencing, microarrays, direct from sample matrix assisted laser desorption/ionization time of flight mass spectroscopy (MALDI-TOF MS), etc.) are disruptive technology. Rather than providing the same results as culture-based methods more quickly, more cheaply or with improved accuracy, they reveal an unexpected diversity of microbes and illuminate dark corners of undiagnosed disease. At times, they overturn existing definitions of presumably well-understood infections, generating new requirements for clinical diagnosis, surveillance and epidemiology. However, current diagnostic microbiology, infection control and epidemiology rest principally on culture methods elegantly optimized by clinical laboratorians. The clinical significance is interwoven; the new methods are out of context, difficult to interpret and impossible to act upon. Culture-independent diagnostics and surveillance methods will not be deployed unless the reported results can be used to select specific therapeutics or infection control measures. To cut the knots surrounding the adoption of culture-independent methods in medical microbiology, culture-dependent methods should be supported by consistent culture-independent methods providing the microbial context. This will temper existing biases and motivate appropriate scrutiny of the older methods and results.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sample storage conditions, extraction methods, PCR primers, and parameters are major factors that affect metagenomics analysis based on microbial 16S rRNA gene sequencing. Most published studies were limited to the comparison of only one or two types of these factors. Systematic multi-factor explorations are needed to evaluate the conditions that may impact validity of a microbiome analysis. This study was aimed to improve methodological options to facilitate the best technical approaches in the design of a microbiome study. Three readily available mock bacterial community materials and two commercial extraction techniques, Qiagen DNeasy and MO BIO PowerSoil DNA purification methods, were used to assess procedures for 16S ribosomal DNA amplification and pyrosequencing-based analysis. Primers were chosen for 16S rDNA quantitative PCR and amplification of region V3 to V1. Swabs spiked with mock bacterial community cells and clinical oropharyngeal swabs were incubated at respective temperatures of -80°C, -20°C, 4°C, and 37°C for 4 weeks, then extracted with the two methods, and subjected to pyrosequencing and taxonomic and statistical analyses to investigate microbiome profile stability.
    01/2014; 2:31. DOI:10.1186/2049-2618-2-31

Full-text (2 Sources)

Available from
Jun 5, 2014