Acute oral toxicity of 3-MCPD mono- and di-palmitic esters in Swiss mice and their cytotoxicity in NRK-52E rat kidney cells

Institute of Food and Nutraceutical Science, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address: .
Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association (Impact Factor: 2.9). 07/2012; 50(10):3785-91. DOI: 10.1016/j.fct.2012.07.038
Source: PubMed


The acute oral toxicity of 1-palmitoyl-3-chloropropanediol (3-MCPD 1-monopalmitate) and 1,2-bis-palmitoyl-3-chloropropanediol (3-MCPD dipalmitate) in Swiss mice were examined, along with their cytotoxicity in NRK-52E rat kidney cells. LD(50) (median lethal dose) value of 3-MCPD 1-monopalmitate was determined 2676.81mg/kg body weight (BW). The results showed that 3-MCPD 1-monopalmitate dose-dependently decreased the mean body weight, and caused significant increase of serum urea nitrogen and creatinine in dead mice compared to the control and survived mice. Major histopathological changes in mice fed 3-MCPD 1-monopalmitate were renal tubular necrosis, protein casts and spermatids decrease in the seminiferous tubules. According to the limit test for 3-MCPD dipalmitate, LD(50) value of 3-MCPD dipalmitate was presumed to be greater than 5000mg/kg BW. Obvious changes were not observed on mean body weight, absolute and relative organ weight or serum urea nitrogen and creatinine levels in mice fed 3-MCPD dipalmitate. However, renal tubular necrosis, protein casts and spermatids decrease were also observed in the dead mice. In addition, MTT and LDH assay results only showed the cytotoxicity of 3-MCPD 1-monopalmitate in NRK-52E rat kidney cells in a dose-dependent manner. Together, the results indicated a greater toxicity of 3-MCPD 1-monopalmitate compared to 3-MCPD dipalmitate.

32 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study was conducted to test the hypothesis that a free radical was formed and mediated the formation of 3-monochloropropanediol (3-MCPD) fatty acid diesters, a group of food contaminants, from diacylglycerols at high temperature under a low-moisture condition for the first time. The presence of free radicals in a vegetable oil kept at 120 °C for 20 min was demonstrated using an electron spin resonance (ESR) spectroscopy examination with 5,5-dimethylpyrroline-N-oxide (DMPO) as the spin trap agent. ESR investigation also showed an association between thermal treatment degree and the concentration of free radicals. A Fourier transform infrared spectroscopy (FT-IR) analysis of sn-1,2-stearoylglycerol (DSG) at 25 and 120 °C suggested the possible involvement of an ester carbonyl group in forming 3-MCPD diesters. On the basis of these results, a novel free radical mediated chemical mechanism was proposed for 3-MCPD diester formation. Furthermore, a quadrupole-time of flight (Q-TOF) MS/MS investigation was performed and detected the DMPO adducts with the cyclic acyloxonium free radical (CAFR) and its product MS ions, proving the presence of CAFR. Furthermore, the free radical mechanism was validated by the formation of 3-MCPD diesters through reacting DSG with a number of organic and inorganic chlorine sources including chlorine gas at 120 and 240 °C. The findings of this study might lead to the improvement of oil and food processing conditions to reduce the level of 3-MCPD diesters in foods and enhance food safety.
    Journal of Agricultural and Food Chemistry 03/2013; 62(17). DOI:10.1021/jf305252q · 2.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A method was developed and validated for the detection of fatty acid di-esters of 2-monochloropropanediol (2-MCPD) and 3-monochloropropanediol (3-MCPD) in edible oils. These analytes are potentially carcinogenic chemical contaminants formed during edible oil processing. After separation from oil matrices using a two-step solid-phase extraction (SPE) procedure, the target compounds are quantitated using liquid chromatography tandem mass spectrometry (LC-MS/MS) with electrospray ionization (ESI). The first chromatographic conditions have been developed which separate intact di-esters of 2-MCPD and 3-MCPD, allowing for their individual quantitation. The method has been validated for 28 3-MCPD di-esters of lauric, myristic, palmitic, linolenic, linoleic, oleic and stearic acids in coconut oil, olive oil and palm oil as well as 3 2-MCPD di-esters using an external calibration curve. The range of average recoveries and relative standard deviations (RSD) across the three oil matrices at three spiking concentrations are 88-118% (2-16% RSD) with maximum limits of quantitation of 30 ng/g (ppb).
    Journal of Agricultural and Food Chemistry 04/2013; 61(20). DOI:10.1021/jf400581g · 2.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 3-Chloro-1,2-propanediol (3-MCPD) fatty acid esters can release free 3-MCPD in a certain condition. Free 3-MCPD is a well-known food contaminant and is toxicological well characterized, however, in contrast to free 3-MCPD, the toxicological characterization of 3-MCPD fatty acid esters is puzzling. In this study, toxicological and metabonomics studies of 3-chloropropane-1,2-dipalmitate (3-MCPD dipalmitate) were carried out based on an acute oral toxicity test, a 90-day feeding test and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) analysis. The LD50 value of 3-MCPD dipalmitate was determined to be 1780 mg/kg body weight (bw) for Wistar rats. The results of the 90-day feeding test in male Wistar rats showed that 3-MCPD dipalmitate caused a significant increase in blood urea nitrogen and creatinine in the high-dose group (267 mg/kg bw/day) compared to control rats. Renal tubular epithelium cell degeneration and renal tubular hyaline cast accumulation were the major histopathological changes in rats administered 3-MCPD dipalmitate. Urine samples obtained after the 90-day feeding test and analyzed by UPLC-MS showed that the differences in metabolic profiles between control and treated rats were clearly distinguished by partial least squares-discriminant analysis (PLS-DA) of the chromatographic data. Five metabolite biomarkers which had earlier and significant variations had been identified, they were first considered to be the early, sensitive biomarkers in evaluating the effect of 3-MCPD dipalmitate exposure, and the possible mechanism of these biomarkers variation was elucidated. The combination of histopathological examination, clinical chemistry and metabolomics analyses in rats resulted in a systematic and comprehensive assessment of the long-term toxicity of 3-MCPD dipalmitate.
    Chemico-biological interactions 10/2013; 206(2). DOI:10.1016/j.cbi.2013.10.004 · 2.58 Impact Factor
Show more