Response to infections in patients with asthma and atopic disease: an epiphenomenon or reflection of host susceptibility?

Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-8300, USA.
The Journal of allergy and clinical immunology (Impact Factor: 12.05). 08/2012; 130(2):343-51. DOI: 10.1016/j.jaci.2012.05.056
Source: PubMed

ABSTRACT Associations between respiratory tract infections and asthma inception and exacerbations are well established. Infant respiratory syncytial virus and rhinovirus infections are known to be associated with an increased risk of asthma development, and among children with prevalent asthma, 85% of asthma exacerbations are associated with viral infections. However, the exact nature of this relationship remains unclear. Is the increase in severity of infections an epiphenomenon, meaning respiratory tract infections just appear to be more severe in patients with underlying respiratory disease, or instead a reflection of altered host susceptibility among persons with asthma and atopic disease? The main focus of this review is to summarize the available levels of evidence supporting or refuting the notion that patients with asthma or atopic disease have an altered susceptibility to selected pathogens, as well as discussing the biological mechanism or mechanisms that might explain such associations. Finally, we will outline areas in need of further research because understanding the relationships between infections and asthma has important implications for asthma prevention and treatment, including potential new pathways that might target the host immune response to select pathogens.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lungs are indispensable organs for the respiratory process, and maintaining their homeostasis is essential for human health and survival. However, during the lifetime of an individual, the lungs suffer countless insults that put at risk their delicate organization and function. Many cells of the immune system participate to maintain this equilibrium and to keep functional lungs. Among these cells, mast cells have recently attracted attention because of their ability to rapidly secrete many chemical and biological mediators that modulate different processes like inflammation, angiogenesis, cell proliferation, etc. In this review, we focus on recent advances in the understanding of the role that mast cells play in lung protection during infections, and of the relation of mast cell responses to type I hypersensitivity-associated pathologies. Furthermore, we discuss the potential role of mast cells during wound healing in the lung and its association with lung cancer, and how mast cells could be exploited as therapeutic targets in some diseases
    Current Respiratory Medicine Reviews 06/2014; 10:115-123.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Most of the research effort regarding asthma has been devoted to its causes, therapy, and prognosis. There is also evidence that the presence of asthma can influence patients' susceptibility to infections, yet research in this aspect of asthma has been limited. There is additional debate in this field, with current literature tending to view the increased risk of infection among atopic patients as caused by opportunistic infections secondary to airway inflammation, especially in patients with severe atopic diseases. However, other evidence suggests that such risk and its underlying immune dysfunction might be a phenotypic or clinical feature of atopic conditions. This review argues (1) that improved understanding of the effects of asthma or other atopic conditions on the risk of microbial infections will bring important and new perspectives to clinical practice, research, and public health concerning atopic conditions and (2) that research efforts into the causes and effects of asthma must be juxtaposed because they are likely to guide each other.
    Journal of Allergy and Clinical Immunology. 08/2014; 134(2):247–257.e3.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lower respiratory tract infections (LRTIs) are a major cause of hospitalization in infants. Research suggests that immunomodulatory properties of vitamin D may influence LRTI risk. This study's objective was to examine whether 25-hydroxyvitamin D [25(OH)D] concentrations in cord blood influenced susceptibility to LRTI in the first year of life. Data was analyzed from a prospective birth cohort of 777 mother-infant pairs based in Ulm, Germany. Relative risks (RRs) of LRTI in relation to 25(OH)D cord blood levels were estimated by log-binomial regression after adjustment for potential confounders. To account for seasonal variation in both vitamin D levels and infections, we examined the association in different seasons. Analyses were conducted using clinical predefined cutpoints, quartiles, and season-standardized 25(OH)D quartiles. We observed a statistically significant association between 25(OH)D status in cord blood and risk of LRTI across the year using clinical cutpoints. The adjusted RR of LRTI for individuals with vitamin D deficiency (<25 nmol/L) in comparison to the referent category (>50 nmol/L) was 1.32 [95 % confidence interval (CI) 1.00, 1.73]. The association differed by maternal allergy status; children born to mothers without allergy demonstrated a RR of 1.45 (95 % CI 1.03, 2.03). The effect was largely driven by a strong association between 25(OH)D and LRTI in infants born in fall with a RR of 3.07 (95 % CI 1.37, 6.87). Our findings suggest that vitamin D deficiency at birth is associated with increased risk of LRTI particularly in infants born to mothers without allergy. The association seems strongest in infants born in fall.
    European Journal of Epidemiology 05/2014; · 5.12 Impact Factor