Shear stress augments the endothelial cell differentiation marker expression in late EPCs by upregulating integrins.

Medicine Research Center, Weifang Medical College, Weifang, Shandong 261053, PR China.
Biochemical and Biophysical Research Communications (Impact Factor: 2.28). 07/2012; 425(2):419-25. DOI: 10.1016/j.bbrc.2012.07.115
Source: PubMed

ABSTRACT Vascular endothelial cell injury has been implicated in the onset of atherosclerosis. A number of previous studies have demonstrated that endothelial progenitor cells (EPCs), in particular late EPCs, play important roles in endothelial maintenance and repair. Recent evidence has revealed shear stress as a key regulator for EPC differentiation. However, the detailed events that contribute to the shear stress-induced EPC differentiation, in particular the mechanisms of mechanotransduction, remain to be identified. The present study was undertaken to further confirm the effects of shear stress on the late EPC differentiation, and to investigate the role of integrins in this procedure. Shear stress was observed to increase the expression of endothelial cell differentiation markers, such as vWF and CD31, in late EPCs isolated from rat bone marrow. Shear stress moreover enhanced the mRNA expression of integrin subunits β(1) and β(3) in a time-dependent manner, and also upregulated specific integrins in late EPCs plated on substrates containing various extracellular matrix (ECM) proteins. In addition, the shear stress-induced vWF and CD31 expression were found to be related to the levels of integrin β(1) and β(3), and were inhibited in late EPCs treated with RGD peptide (Gly-Arg-Gly-Asp-Asn-Pro, GRGDNP) that blocks the binding of integrins to the extracellular matrix. Additionally, this increase was also attenuated by both anti-β(1) integrin and anti-β(3) integrin antibodies. The integrin subunits β(1) and β(3) thus play important roles in regulating the shear stress-induced endothelial cell differentiation marker expression in late EPCs. This may provide novel insights into the mechanisms of mechanotransduction in shear stress-mediated late EPC differentiation.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Flow shear stress plays important roles in modulating differentiation of endothelial progenitor cells (EPCs). MicroRNAs are crucial for diverse cellular processes, but the expressions and functions of microRNAs in EPCs responding to mechanical stimuli remain unclear. We sought to determine the effects of microRNA-34a (miR-34a) and a novel target Forkhead box j2 (Foxj2) on shear stress-induced EPC differentiation. Human umbilical cord blood-derived EPCs were exposed to laminar shear stress of 15 dyn/cm2 with parallel plate flow chamber system. Real time RT-PCR showed that shear stress significantly increased miR-34a expression, which was accompanied by the endothelial differentiation of EPCs. Whereas Foxj2, a putative target of miR-34a predicted by multiple algorithms, was suppressed in this process. Dual luciferase reporter assays, as well as miR-34a mimics and inhibitor treatment were used to confirm the interplay between miR-34a and Foxj2. Our results revealed an inverse correlation of miR-34a and Foxj2 expression implicated in the endothelial differentiation of EPCs. MiR-34a contributed to this process by up-regulating expressions of endothelial cell markers, but down-regulating smooth muscular cell markers. In addition, Foxj2 overexpression attenuated endothelial differentiation of EPCs, while Foxj2 siRNA had opposite effect. These data suggested a unique mechanism that shear stress induces expression of miR-34a, which targets to Foxj2 and promotes endothelial differentiation of EPCs. The results provide new insights into miR-34a/Foxj2 on shear stress-induced EPC differentiation.
    Journal of Molecular and Cellular Cardiology 09/2014; · 5.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The patency of synthetic cardiovascular grafts in the long run is synonymous with their ability to inhibit the processes of intimal hyperplasia, thrombosis and calcification. In the human body, the endothelium of blood vessels exhibits characteristics that inhibit such processes. As such it is not surprising that research in tissue engineering is directed towards replicating the functionality of the natural endothelium in cardiovascular grafts. This can be done either by seeding the endothelium within the lumen of the grafts prior to implantation or by designing the graft such that in situ endothelialisation takes place after implantation. Due to certain difficulties identified with in vitro endothelialisation, in situ endothelialisation, which will be the focus of this article, has garnered interest in the last years. To promote in situ endothelialisation, the following aspects can be taken into account: (1) Endothelial progenital cell mobilization, adhesion and proliferation; (2) Regulating differentiation of progenitor cells to mature endothelium; (3) Preventing thrombogenesis and inflammation during endothelialisation. This article aims to review and compile recent developments to promote the in situ endothelialisation of cardiovascular grafts and subsequently improve their patency, which can also have widespread implications in the field of tissue engineering.
    International Journal of Molecular Sciences 01/2014; 16(1):597-627. · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mechanical forces have long been known to play a role in the maintenance of vascular homeostasis in the mature animal and in developmental regulation in the fetus. More recently, it has been shown that stem cells play a role in vascular repair and remodeling in response to biomechanical stress. Laminar shear stress can directly activate growth factor receptors on stem/progenitor cells, initiating signaling pathways leading toward endothelial cell differentiation. Cyclic strain can stimulate stem cell differentiation toward smooth muscle lineages through different mechanisms. In vivo, blood flow in the coronary artery is significantly altered after stenting, leading to changes in biomechanical forces on the vessel wall. This disruption may activate stem cell differentiation into a variety of cells and cause delayed re-endothelialization. Based on progress in the research field, the present review aims to explore the role of mechanical forces in stem cell differentiation both in vivo and in vitro and to examine what this means for the application of stem cells in the clinic, in tissue engineering, and for the management of aberrant stem cell contribution to disease.
    Arteriosclerosis Thrombosis and Vascular Biology 07/2014; · 5.53 Impact Factor