Article

Estimation of pleiotropy between complex diseases using single-nucleotide polymorphism-derived genomic relationships and restricted maximum likelihood.

The University of Queensland, Queensland Brain Institute, Brisbane, QLD 4072, The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, QLD 4102 and Department of Agriculture and Food Systems, University of Melbourne, VIC 3010, Melbourne, Australia.
Bioinformatics (Impact Factor: 5.47). 07/2012; 28(19):2540-2. DOI: 10.1093/bioinformatics/bts474
Source: PubMed

ABSTRACT Genetic correlations are the genome-wide aggregate effects of causal variants affecting multiple traits. Traditionally, genetic correlations between complex traits are estimated from pedigree studies, but such estimates can be confounded by shared environmental factors. Moreover, for diseases, low prevalence rates imply that even if the true genetic correlation between disorders was high, co-aggregation of disorders in families might not occur or could not be distinguished from chance. We have developed and implemented statistical methods based on linear mixed models to obtain unbiased estimates of the genetic correlation between pairs of quantitative traits or pairs of binary traits of complex diseases using population-based case-control studies with genome-wide single-nucleotide polymorphism data. The method is validated in a simulation study and applied to estimate genetic correlation between various diseases from Wellcome Trust Case Control Consortium data in a series of bivariate analyses. We estimate a significant positive genetic correlation between risk of Type 2 diabetes and hypertension of ~0.31 (SE 0.14, P = 0.024).
Our methods, appropriate for both quantitative and binary traits, are implemented in the freely available software GCTA (http://www.complextraitgenomics.com/software/gcta/reml_bivar.html).
hong.lee@uq.edu.au Supplementary Information: Supplementary data are available at Bioinformatics online.

0 Bookmarks
 · 
91 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have recently developed analysis methods (GREML) to estimate the genetic variance of a complex trait/disease and the genetic correlation between two complex traits/diseases using genome-wide single nucleotide polymorphism (SNP) data in unrelated individuals. Here we use analytical derivations and simulations to quantify the sampling variance of the estimate of the proportion of phenotypic variance captured by all SNPs for quantitative traits and case-control studies. We also derive the approximate sampling variance of the estimate of a genetic correlation in a bivariate analysis, when two complex traits are either measured on the same or different individuals. We show that the sampling variance is inversely proportional to the number of pairwise contrasts in the analysis and to the variance in SNP-derived genetic relationships. For bivariate analysis, the sampling variance of the genetic correlation additionally depends on the harmonic mean of the proportion of variance explained by the SNPs for the two traits and the genetic correlation between the traits, and depends on the phenotypic correlation when the traits are measured on the same individuals. We provide an online tool for calculating the power of detecting genetic (co)variation using genome-wide SNP data. The new theory and online tool will be helpful to plan experimental designs to estimate the missing heritability that has not yet been fully revealed through genome-wide association studies, and to estimate the genetic overlap between complex traits (diseases) in particular when the traits (diseases) are not measured on the same samples.
    PLoS Genetics 04/2014; 10(4):e1004269. · 8.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The genomics era provides opportunities to assess the genetic overlap across phenotypes at the measured genotype level; however current approaches require individual-level genome-wide association (GWA) single nucleotide polymorphism (SNP) genotype data in one or both of a pair of GWA samples. To facilitate the discovery of pleiotropic effects and examine genetic overlap across two phenotypes I have developed a user-friendly web-based application called SECA to perform SNP effect concordance analysis using GWA summary results. The method is validated using publicly available summary data from the Psychiatric Genomics Consortium. http://neurogenetics.qimrberghofer.edu.au/SECA CONTACT: dale.nyholt@qimrberghofer.edu.au SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
    Bioinformatics 04/2014; · 5.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: As custom arrays are cheaper than generic GWAS arrays, larger sample size is achievable for gene discovery. Custom arrays can tag more variants through denser genotyping of SNPs at associated loci, but at the cost of losing genome-wide coverage. Balancing this trade-off is important for maximizing experimental designs. We quantified both the gain in captured SNP-heritability at known candidate regions and the loss due to imperfect genome-wide coverage for inflammatory bowel disease using immunochip (iChip) and imputed GWAS data on 61,251 and 38,550 samples, respectively. For Crohn's disease (CD), the iChip and GWAS data explained 19% and 26% of variation in liability, respectively, and SNPs in the densely genotyped iChip regions explained 13% of the SNP-heritability for both the iChip and GWAS data. For ulcerative colitis (UC), the iChip and GWAS data explained 15% and 19% of variation in liability, respectively, and the dense iChip regions explained 10% and 9% of the SNP-heritability in the iChip and the GWAS data. From bivariate analyses, estimates of the genetic correlation in risk between CD and UC were 0.75 (SE 0.017) and 0.62 (SE 0.042) for the iChip and GWAS data, respectively. We also quantified the SNP-heritability of genomic regions that did or did not contain the previous 163 GWAS hits for CD and UC, and SNP-heritability of the overlapping loci between the densely genotyped iChip regions and the 163 GWAS hits. For both diseases, over different genomic partitioning, the densely genotyped regions on the iChip tagged at least as much variation in liability as in the corresponding regions in the GWAS data, however a certain amount of tagged SNP-heritability in the GWAS data was lost using the iChip due to the low coverage at unselected regions. These results imply that custom arrays with a GWAS backbone will facilitate more gene discovery, both at associated and novel loci.
    Human Molecular Genetics 04/2014; · 7.69 Impact Factor