Article

Regulation of the Subcellular Localization of the G-protein Subunit Regulator GPSM3 through Direct Association with 14-3-3 Protein.

From the Department of Pharmacology and.
Journal of Biological Chemistry (Impact Factor: 4.6). 07/2012; 287(37):31270-9. DOI: 10.1074/jbc.M112.394379
Source: PubMed

ABSTRACT G-protein signaling modulator-3 (GPSM3), also known as G18 or AGS4, is a member of the Gα(i/o)-Loco (GoLoco) motif containing proteins. GPSM3 acts through its two GoLoco motifs to exert GDP dissociation inhibitor activity over Gα(i) subunits; recently revealed is the existence of an additional regulatory site within GPSM3 directed toward monomeric Gβ subunits during their biosynthesis. Here, using in silico and proteomic approaches, we have found that GPSM3 also interacts directly with numerous members of the 14-3-3 protein family. This interaction is dependent on GPSM3 phosphorylation, creating a mode II consensus 14-3-3 binding site. 14-3-3 binding to the N-terminal disordered region of GPSM3 confers stabilization from protein degradation. The complex of GPSM3 and 14-3-3 is exclusively cytoplasmic, and both moieties mutually control their exclusion from the nucleus. Phosphorylation of GPSM3 by a proline-directed serine/threonine kinase and the resultant association of 14-3-3 is the first description of post-translational regulation of GPSM3 subcellular localization, a process that likely regulates important spatio-temporal aspects of G-protein-coupled receptor signaling modulation by GPSM3.

0 Followers
 · 
99 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: FLJ00018/PLEKHG2 is a guanine nucleotide exchange factor for the small GTPases Rac and Cdc42 and has been shown to mediate the signaling pathways leading to actin cytoskeleton reorganization. The function of FLJ00018 is regulated by the interaction of heterotrimeric GTP-binding protein Gβγ subunits or cytosolic actin. However, the details underlying the molecular mechanisms of FLJ00018 activation have yet to be elucidated. In the present study, we show that FLJ00018 is phosphorylated and activated by β1-adrenergic receptor (β1-AR) stimulation-induced EGF receptor (EGFR) transactivation in addition to Gβγ signaling. FLJ00018 is also phosphorylated and activated by direct EGFR stimulation. The phosphorylation of FLJ00018 by EGFR stimulation is mediated by the Ras/mitogen-activated protein kinase (MAPK) pathway. Through deletion and site-directed mutagenesis studies, we have identified Thr-680 as the major site of phosphorylation by EGFR stimulation. FLJ00018 T680A, in which the phosphorylation site is replaced by alanine, showed a limited response of the Neuro-2a cell morphology to EGF stimulation. Our results provide evidence that stimulation of the Ras/MAPK pathway by EGFR results in FLJ00018 phosphorylation at Thr-680, which in turn controls changes in cell shape.
    Journal of Biological Chemistry 02/2014; 289(14). DOI:10.1074/jbc.M113.521880 · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Heterotrimeric guanine nucleotide-binding proteins (G proteins), which consist of three subunits α, β, and γ, function as molecular switches to control downstream effector molecules activated by G protein-coupled receptors (GPCRs). The GTP/GDP binding status of Gα transmits information about the ligand binding state of the GPCR to intended signal transduction pathways. In immune cells heterotrimeric G proteins impact signal transduction pathways that directly, or indirectly, regulate cell migration, activation, survival, proliferation, and differentiation. The cells of the innate and adaptive immune system abundantly express chemoattractant receptors and lesser amounts of many other types of GPCRs. But heterotrimeric G-proteins not only function in classical GPCR signaling, but also in non-canonical signaling. In these pathways the guanine exchange factor (GEF) exerted by a GPCR in the canonical pathway is replaced or supplemented by another protein such as Ric-8A. In addition, other proteins such as AGS3-6 can compete with Gβγ for binding to GDP bound Gα. This competition can promote Gβγ signaling by freeing Gβγ from rapidly rebinding GDP bound Gα. The proteins that participate in these non-canonical signaling pathways will be briefly described and their role, or potential one, in cells of the immune system will be highlighted.
    Cellular Signalling 02/2014; DOI:10.1016/j.cellsig.2014.02.010 · 4.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Activators of G-protein Signaling (AGS) are a family of accessory proteins that were discovered as modulators of heterotrimeric G-protein subunits. The primary aim of the present study was to localize Group I and II AGS proteins and determine the renal expression profile using immunohistochemistry and quantitative RT-PCR, respectively, during normal and injured states of the kidney. Group I AGS1 was found to be predominantly localized to the proximal tubule, Group II AGS3 and AGS5 were exclusively localized to the distal tubular segments, and Group II AGS6 was ubiquitously expressed in every nephron segment of the rodent kidney. In rat kidneys following ischemia-reperfusion injury (IRI), Group I AGS1 mRNA was dramatically increased after 24 h by fivefold (P < 0.05), whereas Group II AGS3 and AGS4 mRNA was significantly decreased at the same time point (P < 0.05). No significant change in the transcript levels were detected at other time points for any of the AGS genes between control and IRI groups. In polycystic diseased kidneys, mRNA levels for AGS3, AGS4 and AGS6 was significantly increased (P < 0.05) by 75-80 % in PCK rat kidneys. The identification of Group I and II AGS mRNA and protein in the kidney may provide insight into the potential mechanism of action during normal and varying states of renal disease or injury.
    Journal of Molecular Histology 12/2014; 46(2). DOI:10.1007/s10735-014-9605-0 · 1.98 Impact Factor