Regulation of the Subcellular Localization of the G-protein Subunit Regulator GPSM3 through Direct Association with 14-3-3 Protein.

From the Department of Pharmacology and.
Journal of Biological Chemistry (Impact Factor: 4.6). 07/2012; 287(37):31270-9. DOI: 10.1074/jbc.M112.394379
Source: PubMed

ABSTRACT G-protein signaling modulator-3 (GPSM3), also known as G18 or AGS4, is a member of the Gα(i/o)-Loco (GoLoco) motif containing proteins. GPSM3 acts through its two GoLoco motifs to exert GDP dissociation inhibitor activity over Gα(i) subunits; recently revealed is the existence of an additional regulatory site within GPSM3 directed toward monomeric Gβ subunits during their biosynthesis. Here, using in silico and proteomic approaches, we have found that GPSM3 also interacts directly with numerous members of the 14-3-3 protein family. This interaction is dependent on GPSM3 phosphorylation, creating a mode II consensus 14-3-3 binding site. 14-3-3 binding to the N-terminal disordered region of GPSM3 confers stabilization from protein degradation. The complex of GPSM3 and 14-3-3 is exclusively cytoplasmic, and both moieties mutually control their exclusion from the nucleus. Phosphorylation of GPSM3 by a proline-directed serine/threonine kinase and the resultant association of 14-3-3 is the first description of post-translational regulation of GPSM3 subcellular localization, a process that likely regulates important spatio-temporal aspects of G-protein-coupled receptor signaling modulation by GPSM3.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Inflammasomes are multi-protein complexes that regulate maturation of the interleukin 1β-related cytokines IL-1β and IL-18 through activation of the cysteine proteinase caspase-1. NOD-like receptor family, pyrin domain containing 3 (NLRP3) protein is a key component of inflammasomes that assemble in response to a wide variety of endogenous and pathogen-derived danger signals. Activation of the NLRP3-inflammasome and subsequent secretion of IL-1β is highly regulated by at least three processes: transcriptional activation of both NLRP3 and pro-IL-1β genes, non-transcriptional priming of NLRP3, and final activation of NLRP3. NLRP3 is predominantly expressed in cells of the hematopoietic lineage. Using a yeast two-hybrid screen, we identified the hematopoietic-restricted protein 'G protein signaling modulator-3' (GPSM3) as a NLRP3-interacting protein and a negative regulator of IL-1β production triggered by NLRP3-dependent inflammasome activators. In monocytes, GPSM3 associates with the C-terminal leucine-rich repeat domain of NLRP3. Bone marrow-derived macrophages lacking GPSM3 expression exhibit an increase in NLRP3-dependent IL-1β, but not TNF-α, secretion. Furthermore, GPSM3-null mice have enhanced serum and peritoneal IL-1β production following Alum-induced peritonitis. Our findings suggest that GPSM3 acts as a direct negative regulator of NLRP3 function.
    Journal of Biological Chemistry 09/2014; DOI:10.1074/jbc.M114.578393 · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Activators of G-protein Signaling (AGS) are a family of accessory proteins that were discovered as modulators of heterotrimeric G-protein subunits. The primary aim of the present study was to localize Group I and II AGS proteins and determine the renal expression profile using immunohistochemistry and quantitative RT-PCR, respectively, during normal and injured states of the kidney. Group I AGS1 was found to be predominantly localized to the proximal tubule, Group II AGS3 and AGS5 were exclusively localized to the distal tubular segments, and Group II AGS6 was ubiquitously expressed in every nephron segment of the rodent kidney. In rat kidneys following ischemia-reperfusion injury (IRI), Group I AGS1 mRNA was dramatically increased after 24 h by fivefold (P < 0.05), whereas Group II AGS3 and AGS4 mRNA was significantly decreased at the same time point (P < 0.05). No significant change in the transcript levels were detected at other time points for any of the AGS genes between control and IRI groups. In polycystic diseased kidneys, mRNA levels for AGS3, AGS4 and AGS6 was significantly increased (P < 0.05) by 75-80 % in PCK rat kidneys. The identification of Group I and II AGS mRNA and protein in the kidney may provide insight into the potential mechanism of action during normal and varying states of renal disease or injury.
    Journal of Molecular Histology 12/2014; 46(2). DOI:10.1007/s10735-014-9605-0 · 1.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: FLJ00018/PLEKHG2 is a guanine nucleotide exchange factor for the small GTPases Rac and Cdc42 and has been shown to mediate the signaling pathways leading to actin cytoskeleton reorganization. The function of FLJ00018 is regulated by the interaction of heterotrimeric GTP-binding protein Gβγ subunits or cytosolic actin. However, the details underlying the molecular mechanisms of FLJ00018 activation have yet to be elucidated. In the present study, we show that FLJ00018 is phosphorylated and activated by β1-adrenergic receptor (β1-AR) stimulation-induced EGF receptor (EGFR) transactivation in addition to Gβγ signaling. FLJ00018 is also phosphorylated and activated by direct EGFR stimulation. The phosphorylation of FLJ00018 by EGFR stimulation is mediated by the Ras/mitogen-activated protein kinase (MAPK) pathway. Through deletion and site-directed mutagenesis studies, we have identified Thr-680 as the major site of phosphorylation by EGFR stimulation. FLJ00018 T680A, in which the phosphorylation site is replaced by alanine, showed a limited response of the Neuro-2a cell morphology to EGF stimulation. Our results provide evidence that stimulation of the Ras/MAPK pathway by EGFR results in FLJ00018 phosphorylation at Thr-680, which in turn controls changes in cell shape.
    Journal of Biological Chemistry 02/2014; 289(14). DOI:10.1074/jbc.M113.521880 · 4.60 Impact Factor