Article

Regulation of RelA/p65 and Endothelial Cell Inflammation by Proline-Rich Tyrosine Kinase 2.

Department of Pediatrics (Neonatology), Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States.
American Journal of Respiratory Cell and Molecular Biology (Impact Factor: 4.11). 07/2012; DOI: 10.1165/rcmb.2012-0047OC
Source: PubMed

ABSTRACT We investigated the role of proline-rich tyrosine kinase 2 (Pyk2) in the mechanism of NF-κB activation and endothelial cell (EC) inflammation induced by thrombin, a procoagulant serine protease released in high amounts during sepsis and other inflammatory conditions. Stimulation of EC with thrombin resulted in a time-dependent activation of Pyk2. RNAi knockdown of Pyk2 attenuated thrombin-induced activity of NF-κB and expression of its target genes, vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1). Depletion of Pyk2 also inhibited NF-κB activity induced by TNFα, suggesting that Pyk2 is a general regulator of NF-κB. Pyk2 knockdown impaired thrombin-induced activation of IKK and phosphorylation (Ser32 and Ser36) of IκBα, but surprisingly failed to prevent IκBα degradation. However, depletion of IKKα or IKKβ was effective in inhibiting IκBα phosphorylation/degradation, as expected. Intriguingly, Pyk2 knockdown impaired nuclear translocation and DNA binding of RelA/p65 despite the inability to prevent IκBα degradation. Additionally, Pyk2 knockdown was associated with inhibition of RelA/p65 phosphorylation at Ser536, which is important for transcriptional activity of RelA/p65. Depletion of IKKα or IKKβ, each impaired RelA/p65 phosphorylation. Taken together, these data identify Pyk2 as a critical regulator of EC inflammation by virtue of engaging IKK to promote the release and the transcriptional capacity of RelA/p65, and additionally, by its ability to facilitate the nuclear translocation of the released RelA/p65. Thus, specific targeting of Pyk2 may be an effective anti-inflammatory strategy in vascular diseases associated with EC inflammation and intravascular coagulation.

0 Followers
 · 
158 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: We addressed the role of transglutaminase2 (TG2), a calcium-dependent enzyme that catalyzes crosslinking of proteins, in the mechanism of endothelial cell (EC) inflammation and lung PMN infiltration. Exposure of EC to thrombin, a procoagulant and proinflammatory mediator, resulted in activation of the transcription factor NF-κB and its target genes, VCAM-1, MCP-1, and IL-6. RNAi knockdown of TG2 inhibited these responses. Analysis of NF-κB activation pathway showed that TG2 knockdown was associated with inhibition of thrombin-induced DNA binding as well as serine phosphorylation of RelA/p65, a crucial event that controls transcriptional capacity of the DNA-bound RelA/p65. These results implicate an important role for TG2 in mediating EC inflammation by promoting DNA binding and transcriptional activity of RelA/p65. Because thrombin is released in high amounts during sepsis and its concentration is elevated in plasma and lavage fluids of patients with Acute Respiratory Distress Syndrome (ARDS), we determined the in vivo relevance of TG2 in a mouse model of sepsis-induced lung PMN recruitment. A marked reduction in NF-κB activation, adhesion molecule expression, and lung PMN sequestration was observed in TG2 knockout mice compared to wild type mice exposed to endotoxemia. Together, these results identify TG2 as an important mediator of EC inflammation and lung PMN sequestration associated with intravascular coagulation and sepsis.
    Shock (Augusta, Ga.) 07/2014; DOI:10.1097/SHK.0000000000000242 · 2.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Airway hyperresponsiveness (AHR) is classically found in asthma, and persistent AHR is associated with poor asthma control. Although airway smooth muscle (ASM) cells play a critical pathophysiologic role in AHR, the paracrine contributions of surrounding cells such as fibroblasts to the contractile phenotype of ASM cells have not been examined fully. This study addresses the hypothesis that nicotine promotes a contractile ASM cell phenotype by stimulating fibroblasts to increase nerve growth factor (NGF) secretion into the environment.
    PLoS ONE 10/2014; 9(10):e109602. DOI:10.1371/journal.pone.0109602 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endoplasmic Reticulum (ER) stress, caused by disturbance in ER homeostasis, has been implicated in several pathological conditions such as ischemic injury, neurodegenerative disorders, metabolic diseases and more recently in inflammatory conditions. Our present study aims at understanding the role of ER stress in endothelial cell (EC) inflammation, a critical event in the pathogenesis of acute lung injury (ALI). We found that preconditioning human pulmonary artery endothelial cells (HPAEC) to ER stress either by depleting ER chaperone and signaling regulator BiP using siRNA, or specifically cleaving (inactivating) BiP using subtilase cytotoxin (SubAB), alleviates EC inflammation. The two approaches adopted to abrogate BiP function induced ATF4 protein expression and the phosphorylation of eIF2α, both markers of ER stress, which in turn resulted in blunting the activation of NF-κB, and restoring endothelial barrier integrity. Pretreatment of HPAEC with BiP siRNA inhibited thrombin-induced IκBα degradation and its resulting downstream signaling pathway involving NF-κB nuclear translocation, DNA binding, phosphorylation at serine536, transcriptional activation and subsequent expression of adhesion molecules. However, TNFα-mediated NF-κB signaling was unaffected upon BiP knockdown. In an alternative approach, SubAB-mediated inactivation of NF-κB was independent of IκBα degradation. Mechanistic analysis revealed that pretreatment of EC with SubAB interfered with the binding of the liberated NF-κB to the DNA, thereby resulting in reduced expression of adhesion molecules, cytokines and chemokines. In addition, both knockdown and inactivation of BiP stimulated actin cytoskeletal reorganization resulting in restoration of endothelial permeability. Together our studies indicate that BiP plays a central role in EC inflammation and injury via its action on NF-κB activation and regulation of vascular permeability.
    PLoS ONE 10/2014; 9(10):e110949. DOI:10.1371/journal.pone.0110949 · 3.53 Impact Factor