Molecular and phylogenetic approaches for assessing sources of Cryptosporidium contamination in water

Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
Water Research (Impact Factor: 5.53). 07/2012; 46(16):5135-50. DOI: 10.1016/j.watres.2012.06.045
Source: PubMed


The high sequence diversity and heterogeneity observed within species or genotypes of Cryptosporidium requires phylogenetic approaches for the identification of novel sequences obtained from the environment. A long-term study on Cryptosporidium in the agriculturally-intensive South Nation River watershed in Ontario, Canada was undertaken, in which 60 sequence types were detected. Of these sequence types 33 were considered novel with no identical matches in GenBank. Detailed phylogenetic analysis identified that most sequences belonged to 17 previously described species: Cryptosporidium andersoni, Cryptosporidium baileyi, Cryptosporidium hominis, Cryptosporidium parvum, Cryptosporidium ubiquitum, Cryptosporidium meleagridis, muskrat I, muskrat II, deer mouse II, fox, vole, skunk, shrew, W12, W18, W19 and W25 genotypes. In addition, two new genotypes were identified, W27 and W28. C. andersoni and the muskrat II genotype were most frequently detected in the water samples. Species associated with livestock made up 39% of the total molecular detections, while wildlife associated species and genotypes accounted for 55% of the Cryptosporidium identified. The human pathogenic species C. hominis and C. parvum had an overall prevalence of 1.6% in the environment, indicating a small risk to humans from the Cryptosporidium present in the watershed. Phylogenetic analysis and knowledge of host-parasite relationships are fundamental in using Cryptosporidium as a source-tracking or human health risk assessment tool.

Download full-text


Available from: Edward Topp, Oct 16, 2014
44 Reads
  • Source
    • "In addition, the routine practice of assessing Cryptosporidium contamination using total oocyst count may overestimate human health risk, considering the majority of the ~26 species and ~40 genotypes (Fayer, 2010; Ruecker et al., 2012) either do not infect or rarely cause illness in humans. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Protozoan pathogens present a significant human health concern, and prevention of contamination into potable networks remains a key focus for drinking water providers. Here, we monitored the change in Cryptosporidium concentration in source water during high flow events in a multi-use catchment. Furthermore, we investigated the diversity of Cryptosporidium species/genotypes present in the source water, and delivered an oocyst infectivity fraction. There was a positive and significant correlation between Cryptosporidium concentration and flow (ρ = 0.756) and turbidity (ρ = 0.631) for all rainfall-runoff events, despite variable source water pathogen concentrations. Cell culture assays measured oocyst infectivity and suggested an overall source water infectious fraction of 3.1%. No infectious Cryptosporidium parvum or Cryptosporidium hominis were detected, although molecular testing detected C. parvum in 7% of the samples analysed using PCR-based molecular techniques. Twelve Cryptosporidium species/genotypes were identified using molecular techniques, and were reflective of the host animals typically found in remnant vegetation and agricultural areas. The inclusion of molecular approaches to identify Cryptosporidium species and genotypes highlighted the diversity of pathogens in water, which originated from various sources across the catchment. We suggest this mixing of runoff water from a range of landuses containing diverse Cryptosporidium hosts is a key explanation for the often-cited difficulty forming strong pathogen-indicator relationships.
    Water Research 09/2014; 67C:310-320. DOI:10.1016/j.watres.2014.08.055 · 5.53 Impact Factor
  • Source
    • "Aeromonas (monitoring began in 2009) was processed and enumerated following USEPA Method 1605 (USEPA, 2001) and Havelaar et al. (1987). Cryptosporidium were enumerated, sequenced, and genotyped using phylogenetic analysis (Ruecker et al., 2012). For group A rotavirus, hepatitis E virus, and norovirus GII, 500 mL of water were processed in accordance with the OPFLP-04 standard method for the recovery and concentration of viruses present in artificially and naturally contaminated water following Health Canada's compendium of analytical methods (Brassard et al., 2005, 2007; see Supp. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Over 3500 individual water samples, for 131 sampling times, targeting waterborne pathogens/fecal indicator bacteria were collected during a 7-year period from 4 sites along an intermittent stream running through a small livestock pasture system with and without cattle access-to-stream restriction measures. The study assessed the impact of cattle pasturing/riparian zone protection on: pathogen (bacterial, viral, parasite) occurrence, concentrations of fecal indicators, and quantitative microbial risk assessments (QMRA) of the risk of Cryptosporidium,Giardia and Escherichia coli O157:H7 infection in humans. Methodologies were developed to compute QMRA mean risks on the basis of water samples exhibiting potentially human infectious Cryptosporidium and E. coli based on genotyping Crytosporidium, and E. coli O157:H7 presence/absence information paired with enumerated E. coli. All Giardia spp. were considered infectious. No significant pasturing treatment effects were observed among pathogens, with the exception of Campylobacter spp. and E. coli O157:H7. Campylobacter spp. prevalence significantly decreased downstream through pasture treatments and E. coli O157:H7 was observed in a few instances in the middle of the unrestricted pasture. Densities of total coliform, fecal coliform, and E. coli reduced significantly downstream in the restricted pasture system, but not in the unrestricted system. Seasonal and flow conditions were associated with greater indicator bacteria densities, especially in the summer. Norovirus GII was detected at rates of 7-22% of samples for all monitoring sites, and rotavirus in 0-7% of samples for all monitoring sites; pasture treatment trends were not evident, however. Seasonal and stream flow variables (and their interactions) were relatively more important than pasture treatments for initially stratifying pathogen occurrence and higher fecal indicator bacteria densities. Significant positive associations among fecal indicator bacteria and Campylobacter spp. detection were observed. For QMRA, adjusting for the proportion of Cryptosporidium spp. detected that are infectious for humans reduces downstream risk estimates by roughly one order of magnitude. Using QMRA in this manner provides a more refined estimate of beneficial management practice effects on pathogen exposure risks to humans.
    Water Research 08/2013; 47(16). DOI:10.1016/j.watres.2013.07.041 · 5.53 Impact Factor
  • Source
    • "Some waterborne enteric pathogens may be informative with respect to their source origin. For example, various Cryptosporidium species and genotypes can be very host specific (Ruecker et al., 2012). Enterohemorrhagic E. coli O157:H7 are mainly carried by cattle (Bach et al., 2002). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Over a seven-year period (2004-2010) 1095 water samples were obtained from the South Nation River basin at multiple watershed monitoring sites (Ontario, Canada). Real-time PCR using Bacteroidales specific markers was used to identify the origin (human (10% prevalence), ruminant (22%), pig (∼2%), Canada goose (4%) and muskrat (7%)) of fecal pollution. In parallel, the distribution of fecal indicator bacteria and waterborne pathogens (Cryptosporidium oocysts, Giardia cysts, Escherichia coli O157:H7, Salmonella enterica and Campylobacter spp.) was evaluated. Associations between the detection of specific Bacteroidales markers and the presence of fecal indicator bacteria, pathogens, and distinct land use or environmental variables were evaluated. Linear correlations between Bacteroidales markers and fecal indicator bacteria were weak. However, mean marker densities, and the presence and absence of markers could be discriminated on the basis of threshold fecal indicator densities. The ruminant-specific Bacteroidales marker was the most frequently detected marker in water, consistent with the large number of dairy farms in the study area. Detection of the human or the ruminant markers were associated with a slightly higher risk of detecting S. enterica. Detection of the muskrat marker was related to more frequent Campylobacter spp. detections. Important positive associations between markers and pathogens were found among: i) total Bacteroidales and Cryptosporidium and Giardia, ii) ruminant marker and S. enterica, and iii) muskrat and Campylobacter spp.
    Water Research 02/2013; 47(7). DOI:10.1016/j.watres.2013.02.009 · 5.53 Impact Factor
Show more