Molecular and phylogenetic approaches for assessing sources of Cryptosporidium contamination in water

Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
Water Research (Impact Factor: 5.32). 07/2012; 46(16):5135-50. DOI: 10.1016/j.watres.2012.06.045
Source: PubMed

ABSTRACT The high sequence diversity and heterogeneity observed within species or genotypes of Cryptosporidium requires phylogenetic approaches for the identification of novel sequences obtained from the environment. A long-term study on Cryptosporidium in the agriculturally-intensive South Nation River watershed in Ontario, Canada was undertaken, in which 60 sequence types were detected. Of these sequence types 33 were considered novel with no identical matches in GenBank. Detailed phylogenetic analysis identified that most sequences belonged to 17 previously described species: Cryptosporidium andersoni, Cryptosporidium baileyi, Cryptosporidium hominis, Cryptosporidium parvum, Cryptosporidium ubiquitum, Cryptosporidium meleagridis, muskrat I, muskrat II, deer mouse II, fox, vole, skunk, shrew, W12, W18, W19 and W25 genotypes. In addition, two new genotypes were identified, W27 and W28. C. andersoni and the muskrat II genotype were most frequently detected in the water samples. Species associated with livestock made up 39% of the total molecular detections, while wildlife associated species and genotypes accounted for 55% of the Cryptosporidium identified. The human pathogenic species C. hominis and C. parvum had an overall prevalence of 1.6% in the environment, indicating a small risk to humans from the Cryptosporidium present in the watershed. Phylogenetic analysis and knowledge of host-parasite relationships are fundamental in using Cryptosporidium as a source-tracking or human health risk assessment tool.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cryptosporidium and Giardia protozoa are zoonotic parasites that cause human gastroenteritis and can be transmitted to human through the fecal-oral route and water or food. Several species belong to these genera and their resistant forms occur in water, but only some of them are infectious to human. Health risk depends on the occurrence of infectious Cryptosporidium and Giardia species and genotypes in water, and only molecular techniques allow detecting them, as well as enable to identify the contamination source. In this work, genotyping and phylogenetic analysis have been performed on the basis of 18S rDNA and ß-giardin genes sequences of Cryptosporidium and Giardia, respectively, in order to provide the molecular characterization of these parasites detected earlier in five natural water bodies in Poland and to track possible sources of their (oo)cysts in water. Genotyping revealed a high similarity (over 99 up to 100 %) of analyzed sequences to cattle genotype of C. parvum isolated from cattle and human and to G. intestinalis assemblage B isolated from human. The sequences obtained by others originated from patients with clinical symptoms of cryptosporidiosis or giardiasis and/or with the infection confirmed by different methods. The contamination of three examined lakes is probably human-originated, while the sources of contamination of two remaining lakes are wild and domestic animals. Obtained phylogenetic trees support suggestions of other authors that the bovine genotype of C. parvum should be a separate species, as well as A and B assemblages of G. intestinalis.
    Parasitology Research 12/2014; 114. DOI:10.1007/s00436-014-4234-9 · 2.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In March 2013, thousands of domestic pig carcasses were found floating in the Huangpu River, a drinking source water in Shanghai, China. To investigate the impact of the pig carcass incident on microbial water quality, 178 river water samples were collected from the upper Huangpu River during March 2013 to March 2014. Samples were concentrated by calcium carbonate flocculation, and examined for host-adapted Cryptosporidium and Enterocytozoon bieneusi by PCR. Positive PCR products were sequenced to determine Cryptosporidium species and E. bieneusi genotypes. A total of 67 (37.6%) and 56 (31.5%) samples were PCR-positive for Cryptosporidium and E. bieneusi, respectively. The occurrence rates of Cryptosporidium and E. bieneusi in March 2013 (83.3%; 41.7%) and May 2013 (73.5%; 44.1%) were significantly higher than rates in later sampling times. Among 13 Cryptosporidium species/genotypes identified, C. andersoni and C. suis were the most common species, being found in 38 and 27 samples, respectively. Seventeen E. bieneusi genotypes were found, belonging to 11 established genotypes (EbpC, EbpA, D, CS-8, PtEb IX, Peru 8, Peru 11, PigEBITS4, EbpB, G, O) and six new ones (RWSH1 to RWSH6), most of which belonged to pig-adapted Groups 1d and 1e. EbpC was the most common genotype, being found in 37 samples. The distribution of Cryptosporidium species and E. bieneusi genotypes suggest that dead pigs contributed significantly to Cryptosporidium and E. bieneusi contamination in the Huangpu River. Although most Cryptosporidium species found in river water were not major human pathogens, the majority of E. bieneusi genotypes detected were endemic in China. Data from this study should be useful in the development of strategies in addressing future contamination events in drinking water supplies.
    Environmental Science and Technology 11/2014; 48(24). DOI:10.1021/es504464t · 5.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Wildlife are increasingly recognized as important biological reservoirs of zoonotic species of Cryptosporidium that might contaminate water and cause human exposure to this protozoal parasite. The habitat range of the yellow-bellied marmot (Marmota flaviventris) overlaps extensively with the watershed boundaries of municipal water supplies for California communities along the foothills of the Sierra Nevada. We conducted a cross-sectional epidemiological study to estimate the fecal shedding of Cryptosporidium oocysts by yellow-bellied marmots and to quantify the environmental loading rate and determine risk factors for Cryptosporidium fecal shedding in this montane wildlife species. The observed proportion of Cryptosporidium positive fecal samples was 14.7% (33/224, positive number relative to total number samples) and the environmental loading rate was estimated to be 10,693 oocysts animal-1 day-1. Fecal shedding was associated with the elevation and vegetation status of their habitat. Based on a portion of the 18s rRNA gene sequence of 2 isolates, the Cryptosporidium found in Marmota flaviventris were 99.88%–100% match to multiple isolates of C. parvum in the GenBank.
    03/2015; 57(2). DOI:10.1016/j.ijppaw.2015.02.004


Available from
Oct 16, 2014