Estrogen regulation of mitochondrial bioenergetics: implications for prevention of Alzheimer's disease.

Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA.
Advances in pharmacology (San Diego, Calif.) 01/2012; 64:327-71. DOI: 10.1016/B978-0-12-394816-8.00010-6
Source: PubMed

ABSTRACT Alzheimer's disease (AD) is a neurodegenerative disease with a complex and progressive pathological phenotype characterized first by hypometabolism and impaired mitochondrial bioenergetics followed by pathological burden. Increasing evidence indicates an antecedent and potentially causal role of mitochondrial bioenergetic deficits and brain hypometabolism coupled with increased mitochondrial oxidative stress in AD pathogenesis. Compromised aerobic glycolysis pathway coupled with oxidative stress is first accompanied by a shift toward a ketogenic pathway that eventually progresses into fatty acid oxidation (FAO) pathways and leads to white matter degeneration and overproduction and mitochondrial accumulation of β-amyloid. Estrogen-induced signaling pathways converge upon the mitochondria to enhance mitochondrial function and to sustain aerobic glycolysis coupled with citric acid cycle-driven oxidative phosphorylation to potentiate ATP (Adenosine triphosphate) generation. In addition to potentiated mitochondrial bioenergetics, estrogen also enhances neural survival and health through maintenance of calcium homeostasis, promotion of antioxidant defense against free radicals, efficient cholesterol trafficking, and beta amyloid clearance. Significantly, the convergence of E2 mechanisms of action onto mitochondria is also a potential point of vulnerability when activated in diseased neurons that exacerbates degeneration through increased load on dysregulated calcium homeostasis. The "healthy cell bias of estrogen action" hypothesis examines the role that regulating mitochondrial function and bioenergetics play in promoting neural health and the mechanistic crossroads that lead to divergent outcomes following estrogen exposure. As the continuum of neurological health progresses from healthy to unhealthy, so too do the benefits of estrogen or hormone therapy.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In Alzheimer's disease (AD), molecular changes are observed not only in patients' neurons but also in peripheral cells, such as blood lymphocytes. These include changes in the level of oxidative stress markers, mitochondria impairment, and aberrant cell cycle regulation in AD blood lymphocytes. While the concepts of early causes of AD are currently highly controversial, these findings provide support for the cell cycle hypothesis of AD pathomechanism and emphasize the systemic nature of the disease. Moreover, because of difficulties in studying dynamic processes in the human brain, lymphocytes seem to be useful for readout of AD molecular mechanisms. In addition, lymphocytes as easily accessible human cells have potential diagnostic value. We summarize current perspectives for the development of new therapeutic strategies based on oxidative stress and cell cycle dysregulation in AD, and for diagnostic methodologies involving new markers in AD lymphocytes.
    Journal of Alzheimer's disease: JAD 03/2015; 46(2). DOI:10.3233/JAD-141977 · 3.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondrial DNA (mtDNA) damage and the generation of reactive oxygen species have been associated with and implicated in the development and progression of Alzheimer's disease. To study how mtDNA damage affects reactive oxygen species and amyloid beta (Aβ) pathology in vivo, we generated an Alzheimer's disease mouse model expressing an inducible mitochondrial-targeted endonuclease (Mito-PstI) in the central nervous system. Mito-PstI cleaves mtDNA causing mostly an mtDNA depletion, which leads to a partial oxidative phosphorylation defect when expressed during a short period in adulthood. We found that a mild mitochondrial dysfunction in adult neurons did not exacerbate Aβ accumulation and decreased plaque pathology. Mito-PstI expression altered the cleavage pathway of amyloid precursor protein without increasing oxidative stress in the brain. These data suggest that mtDNA damage is not a primary cause of Aβ accumulation.
    Neurobiology of aging 05/2013; 34(10). DOI:10.1016/j.neurobiolaging.2013.04.014 · 4.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 17β-estradiol (E2) is considered to modulate the ATP synthase activity through direct binding to the oligomycin sensitive-conferring protein. We have previously demonstrated that E2 increases the amplitude of depolarization associated with the addition of ADP to energized mitochondria (i.e., to initiate a phosphorylative cycle) suggesting a direct action on the phosphorylative system of mitochondria. The purpose of the present study was to investigate the underlying mechanisms responsible for this effect. We show here that E2 modulates the activity of mitochondrial ATP synthase by promoting the intrinsic uncoupling ("slipping") of the ATP synthase. E2 depressed RCR, ADP/O ratio and state 3 respiration, whereas state 4 respiration was increased and V(FCCP) (uncoupled respiration) remained unaltered. In contrast to the stimulatory effect on state 4 respiration, state 2 respiration and V(olig) were not affected by E2. The effect of E2 appeared to be directed towards ATP synthase, since glutamate/malate respiration, uncoupled from the electron transport chain, was unaffected by E2. Apparently, E2 allows a proton back-leak through the F(o) component of ATP synthase. This action of E2 is dependent on the presence of ATP, is more pronounced at high membrane potentials, and it is reversed by oligomycin (a Fo-ATP synthase inhibitor) but not by resveratrol (a F(1)-ATP synthase inhibitor). Altogether, our data provide a mechanistic explanation for the effect of E2 at the level of mitochondrial ATP synthase.
    Journal of Bioenergetics 12/2012; 45(3). DOI:10.1007/s10863-012-9497-1 · 2.71 Impact Factor