Age-Related Oxidative Stress Compromises Endosomal Proteostasis

Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
Cell Reports (Impact Factor: 8.36). 07/2012; 2(1):136-49. DOI: 10.1016/j.celrep.2012.06.005
Source: PubMed


A hallmark of aging is an imbalance between production and clearance of reactive oxygen species and increased levels of oxidatively damaged biomolecules. Herein, we demonstrate that splenic and nodal antigen-presenting cells purified from aging mice accumulate oxidatively modified proteins with side-chain carbonylation, advanced glycation end products, and lipid peroxidation. Furthermore, we show that the endosomal accumulation of oxidatively modified proteins interferes with the efficient processing of exogenous antigens and degradation of macroautophagy-delivered proteins. In support of a causative role for oxidized products in the inefficient immune response, a decrease in oxidative stress improved the adaptive immune response to immunizing antigens. These findings underscore a previously unrecognized negative effect of age-dependent changes in cellular proteostasis on the immune response.

Download full-text


Available from: Laura Santambrogio,
  • Source
    • "The percentage of lysosome-MTB as well as lysosome-MTB-LC3 co-localization was calculated by counting the overlapping of fluorescence in random fields for a minimum of 200 internalized bacilli for three independent infections. LC3 puncta per cell was determined using the Image J software and puncta analyzer plug-in (NIH, Maryland, US), in thresholded images with size from 5 to 20 pixel2 and puncta circularity 0.8-1 as described previously [47], in random fields for a minimum of 100 cells for three independent infections. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Apoptosis inhibitor of macrophages (AIM), a scavenger protein secreted by tissue macrophages, is transcriptionally regulated by the nuclear receptor Liver X Receptor (LXR) and Retinoid X Receptor (RXR) heterodimer. Given that LXR exerts a protective immune response against M. tuberculosis, here we analyzed whether AIM is involved in this response. In an experimental murine model of tuberculosis, AIM serum levels peaked dramatically early after infection with M. tuberculosis, providing an in vivo biological link to the disease. We therefore studied the participation of AIM in macrophage response to M. tuberculosis in vitro. For this purpose, we used the H37Rv strain to infect THP-1 macrophages transfected to stably express AIM, thereby increasing infected macrophage survival. Furthermore, the expression of this protein enlarged foam cell formation by enhancing intracellular lipid content. Phagocytosis assays with FITC-labeled M. tuberculosis bacilli indicated that this protein was not involved in bacterial uptake; however, AIM expression decreased the number of intracellular cfus by up to 70% in bacterial killing assays, suggesting that AIM enhances macrophage mycobactericidal activity. Accordingly, M. tuberculosis-infected AIM-expressing cells upregulated the production of reactive oxygen species. Moreover, real-time PCR analysis showed increased mRNA levels of the antimicrobial peptides cathelicidin and defensin 4B. These increases were concomitant with greater cellular concentrations of the autophagy-related molecules Beclin 1 and LC3II, as well as enhanced acidification of mycobacterial phagosomes and LC3 co-localization. In summary, our data support the notion that AIM contributes to key macrophage responses to M. tuberculosis.
    PLoS ONE 11/2013; 8(11):e79670. DOI:10.1371/journal.pone.0079670 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cells continuously turn over proteins through cycles of synthesis and degradation in order to maintain a functional proteome and to exert a tight control in the levels of regulatory proteins. Selective degradation of proteins was initially thought to be an exclusive function of the ubiquitin-proteasome system, however, over the years, the contribution of lysosomes to this selective degradation, through the process of autophagy, has become consolidated. In this context, molecular chaperones, classically associated with protein folding, unfolding and assembling have been revealed as important modulators of selectivity during the autophagic process. Here, we review this relatively new role of chaperones in mediating selective autophagy and comment on how alterations of this function can lead to human pathologies associated to proteotoxicity.
    Pharmacological Research 10/2012; 66(6). DOI:10.1016/j.phrs.2012.10.002 · 4.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There seems to be little doubt that xenobiotic and plant derived organosulfur compounds have enormous benefits for in vitro cellular functions and for a multitude of diseases, including cancer. Since there are numerous reviews on anticancer activities of plant organosulfurs, the focus herein will be on alterations associated with xenobiotic organosulfurs. Benefits of 2-mercaptoethanol (2-Me), N-Acetyl-cysteine, cysteamine, thioproline, piroxicam, disulfiram, amifostine, sulindac, celecoxib, oltipraz and their derivates on transplanted homologous tumors and on autochthonous cancers with a viral-, radiation-, chemical carcinogen-, and undefined-etiology are assessed. Because all organosulfurs were not tested for activity in each of the etiology categories, comparative evaluations are restricted. In general, all 'appeared' to lower the incidence of cancer irrespective of etiology; however, since most of these values were determined at ages much younger than at a natural-end-of-life-age, differences most likely, instead, reflect a delayed initiation and/or a slowed progression of tumorigenesis. The poorest, long-term benefits of early intervention protocols occurred for viral- and chemical carcinogen-induced cancers. In addition, once tumorigenesis was beyond the initiation stage, outcomes of organosulfur therapies were extremely poor, indicating that they will not be of significant value as stand alone treatments. More importantly, except for the lifetime prevention of spontaneous and radiation-induced mammary tumors by daily dietary 2-Me, similar life long prevention of tumorigenesis was not achieved with other xenobiotics or any of nature's plant organosulfurs. These results raise an interesting question: Is the variability in incidence found for different organosulfurs associated with (a) their structure, (b) the length of the untreated latency period, (c) treatment duration/dose, and/or (d) the etiology-inducing agent?
    01/2013; 1(4). DOI:10.7243/2052-6199-1-4
Show more