Mesenchymal Stem Cells from the Retropatellar Fat Pad and Peripheral Blood Stimulate ACL Fibroblast Migration, Proliferation, and Collagen Gene Expression

Department of Orthopaedic Surgery, Children's Hospital Boston , Boston, MA , USA.
Connective tissue research (Impact Factor: 1.98). 07/2012; 54(1). DOI: 10.3109/03008207.2012.715701
Source: PubMed

ABSTRACT Mesenchymal stem cells (MSCs) have been of recent interest as adjuncts for ligament repair. However, the effect of these cells on the resident ligament fibroblasts has not yet been defined. In this study, we hypothesized that co-culture of MSCs and ligament fibroblasts would result in increases in the proliferative rate of the ligament fibroblasts and their expression of collagen-related genes, as well as differentiation of the MSCs down a fibroblastic pathway. In addition, we hypothesized that these effects would be dependent on the source of the MSCs. Porcine MSCs were isolated from both the retro-patellar fat pad (ADSCs) and the peripheral blood (PBMCs) and co-cultured with porcine anterior cruciate ligament (ACL) fibroblasts. Fibroblast migration, proliferation, and collagen gene expression were evaluated at time points up to 14 days. ADSCs had a greater effect on stimulating ACL-fibroblast proliferation and procollagen production, while PBMCs were more effective in stimulating ligament fibroblast migration. In addition, co-culture with the ACL fibroblasts led to significant increases in collagen gene expression for ADSCs, suggesting a differentiation of these cells down a fibroblastic pathway during the co-culture period. This was not seen for the PBMCs. Thus, the effects of MSCs on in situ ACL fibroblasts were found to be source dependent, and the choice of MSC source should take into account the different performance characteristic of each type of MSC.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Growth factors and cytokines (referred to collectively hereafter as GFs) control cell growth, proliferation, and differentiation via a network of inter and intracellular signaling pathways. There are striking parallels between the pathways involved in skin wound healing and those implicated in photoaging of the skin. In recent years, topical and injectable GFs have emerged as an intriguing therapeutic modality that can be harnessed for aesthetic and medical purposes. This article provides a review of available evidence for the role in skin regeneration of topical GFs, and of injectable GFs contained in autologous platelet-rich plasma (PRP). It presents data from recent studies of GFs, offers a discussion of their potential to serve as antiaging actives, and includes safety considerations. As studies of injectable GFs typically assume preexisting familiarity with PRP protocols and the theory behind them, explanatory notes are provided. An assessment is provided of the evidence gaps that exist currently between experimental observations regarding GFs and their proven clinical benefits. Data of evidence levels II and III support the use for skin rejuvenation of topical GFs derived from sources including secretions or lysate of human dermal fibroblasts, and secretions of the snail Cryptomphalus aspersa. GFs with associated stem cell proteins, secreted by human dermal fibroblasts under hypoxic stress, can accelerate skin healing after laser resurfacing. In vitro and animal studies, small case series of PRP-treated patients and one prospective clinical study of its variant, platelet-rich fibrin matrix (PRFM), suggest the value of injectable GFs for skin rejuvenation. However, data of higher power are required to expand this proof of concept into an evidence-based paradigm. The clinical applications of topical and injectable GFs are promising, and remain to be fully defined. With continued study, data of higher evidence level can be accrued and formulations can be developed that offer optimal clinical efficacy, safety, tolerability, and stability. Better understanding of the mechanism of action of GFs can potentially advance our general understanding of dermal signaling pathways, and hence of hyaluronic acid and other alloplastic fillers; and allow the development of protocols for synergistic combination of GFs with other skin rejuvenation modalities.
    Facial Plastic Surgery 04/2014; 30(2):157-71. DOI:10.1055/s-0034-1372423 · 0.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Coculture of mesenchymal stem cells (MSCs) from the retropatellar fat pad and peripheral blood has been shown to stimulate anterior cruciate ligament (ACL) fibroblast proliferation and collagen production in vitro. Current techniques of bioenhanced ACL repair in animal studies involve adding a biologic scaffold, in this case an extracellular matrix-based scaffold saturated with autologous whole blood, to a simple suture repair of the ligament. Whether the enrichment of whole blood with MSCs would further improve the in vivo results of bioenhanced ACL repair was investigated. The addition of MSCs derived from adipose tissue or peripheral blood to the blood-extracellular matrix composite, which is used in bioenhanced ACL repair to stimulate healing, would improve the biomechanical properties of a bioenhanced ACL repair after 15 weeks of healing. Controlled laboratory study. Twenty-four adolescent Yucatan mini-pigs underwent ACL transection followed by (1) bioenhanced ACL repair, (2) bioenhanced ACL repair with the addition of autologous adipose-derived MSCs, and (3) bioenhanced ACL repair with the addition of autologous peripheral blood derived MSCs. After 15 weeks of healing, the structural properties of the ACL (yield load, failure load, and linear stiffness) were measured. Cell and vascular density were measured in the repaired ACL via histology, and its tissue structure was qualitatively evaluated using the advanced Ligament Maturity Index. After 15 weeks of healing, there were no significant improvements in the biomechanical or histological properties with the addition of adipose-derived MSCs. The only significant change with the addition of peripheral blood MSCs was an increase in knee anteroposterior laxity when measured at 30° of flexion. These findings suggest that the addition of adipose or peripheral blood MSCs to whole blood before saturation of an extracellular matrix carrier with the blood did not improve the functional results of bioenhanced ACL repair after 15 weeks of healing in the pig model. Whole blood represents a practical biologic additive to ligament repair, and any other additive (including stem cells) should be demonstrated to be superior to this baseline before clinical use is considered. © 2014 The Author(s).
    The American Journal of Sports Medicine 12/2014; DOI:10.1177/0363546514559826 · 4.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In sports medicine, adult stem cells are the subject of great interest. Several uses of stem cells are under investigation including cartilage repair, meniscal regeneration, anterior cruciate ligament reconstruction, and tendinopathy. Extensive clinical and basic science research is warranted as stem cell therapies become increasingly common in clinical practice. In the United States, the Food and Drug Administration (FDA) is responsible for regulating the use of stem cells through its "Human Cells, Tissues, and Cellular and Tissue-Based Products" regulations. This report provides a brief overview of FDA regulation of adult stem cells. Several common clinical case scenarios are then presented that highlight how stem cells are currently being used in sports medicine and how current FDA regulations are likely to affect the physicians who use them. In the process, it explains how a variety of factors in sourcing and handling these cells, particularly the extent of cell manipulation, will affect what a physician can and cannot do without first obtaining the FDA's express approval. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.