Investigation of antibacterial properties silver nanoparticles prepared via green method.

Chemistry Central Journal (Impact Factor: 1.31). 07/2012; 6(1):73. DOI:10.1186/1752-153X-6-73
Source: PubMed

ABSTRACT BACKGROUND: This study aims to investigate the influence of different stirring times on antibacterial activity of silver nanoparticles in polyethylene glycol (PEG) suspension. The silver nanoparticles (Ag-NPs) were prepared by green synthesis method using green agents, polyethylene glycol (PEG) under moderate temperature at different stirring times. Silver nitrate (AgNO3) was taken as the metal precursor while PEG was used as the solid support and polymeric stabilizer. The antibacterial activity of different sizes of nanosilver was investigated against Gram-positive [Staphylococcus aureus] and Gram-negative bacteria [Salmonella typhimurium SL1344] by the disk diffusion method using Mueller-Hinton Agar. RESULTS: Formation of Ag-NPs was determined by UV-vis spectroscopy where surface plasmon absorption maxima can be observed at 412-437 nm from the UV-vis spectrum. The synthesized nanoparticles were also characterized by X-ray diffraction (XRD). The peaks in the XRD pattern confirmed that the Ag-NPs possessed a face-centered cubic and peaks of contaminated crystalline phases were unable to be located. Transmission electron microscopy (TEM) revealed that Ag-NPs synthesized were in spherical shape. The optimum stirring time to synthesize smallest particle size was 6 hours with mean diameter of 11.23 nm. Zeta potential results indicate that the stability of the Ag-NPs is increases at the 6 h stirring time of reaction. The Fourier transform infrared (FT-IR) spectrum suggested the complexation present between PEG and Ag-NPs. The Ag-NPs in PEG were effective against all bacteria tested. Higher antibacterial activity was observed for Ag-NPs with smaller size. These suggest that Ag-NPs can be employed as an effective bacteria inhibitor and can be applied in medical field. CONCLUSIONS: Ag-NPs were successfully synthesized in PEG suspension under moderate temperature at different stirring times. The study clearly showed that the Ag-NPs with different stirring times exhibit inhibition towards the tested gram-positive and gram-negative bacteria.

0 0
1 Bookmark
  • [show abstract] [hide abstract]
    ABSTRACT: Silver has been used since time to control bodily infection, prevent food spoilage and heal wounds by preventing infection. The present study aims at an environmental friendly method of synthesizing silver nanoparticles, from the root of Morinda citrifolia; without involving chemical agents associated with environmental toxicity. The obtained nanoparticles were characterized by UV-vis absorption spectroscopy with an intense surface plasmon resonance band at 413nm clearly reveals the formation of silver nanoparticles. Fourier transmission infra red spectroscopy (FTIR) showed nanopartilces were capped with plant compounds. Field emission-scanning electron microscopy (FE-SEM) and Transmission electron microscopy (TEM) showed that the spherical nature of the silver nanoparticles with a size of 30-55nm. The X-ray diffraction spectrum XRD pattern clearly indicates that the silver nanoparticles formed in the present synthesis were crystalline in nature. In addition these biologically synthesized nanoparticles were also proved to exhibit excellent cytotoxic effect on HeLa cell.
    Colloids and surfaces B: Biointerfaces 01/2013; 106C:74-78. · 3.55 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: To synthesize silver nanopaticles from leaves extract of Eucalyptus chapmaniana (E. chapmaniana) and test the antimicrobial of the nanoparticles against different pathogenic bacteria, yeast and its toxicity against human acute promyelocytic leukemia (HL-60) cell line. Ten milliliter of leaves extract was mixed with 90 mL of 0.01 mmol/mL or 0.02 mmol/mL aqueous AgNO3 and exposed to sun light for 1 h. A change from yellowish to reddish brown color was observed. Characterization using UV-vis spectrophotometery and X-ray diffraction analysis were performed. Antimicrobial activity against six microorganisms was tested using well diffusion method and cytoxicity test using 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, a yellow tetrazole was obtained on the human leukemia cell line (HL-60). UV-vis spectral analysis showed silver surface plasmon resonance band at 413 nm. X-ray diffraction showed that the particles were crystalline in nature with face centered cubic structure of the bulk silver with broad beaks at 38.50° and 44.76°. The synthesized silver nanoparticles efficiently inhibited various pathogenic organisms and reduced viability of the HL-60 cells in a dose-dependent manner. It has been demonstrated that the extract of E. chapmaniana leaves are capable of producing silver nanoparticles extracellularly and the Ag nanoparticles are quite stable in solution. Further studies are needed to fully characterize the toxicity and the mechanisms involved with the antimicrobial and anticancer activity of these particles.
    Asian Pacific Journal of Tropical Biomedicine 01/2013; 3(1):58-63.
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Background For centuries silver salts have been used as antimicrobial agents for humans. The activity of silver cations varies on their bioavailability. So delivery methods, solubility and ionization of the silver sources are important parameters to deal metals in biological systems. The bonding of silver cations to biologically compatible ligands enhances their bioavailability and ultimately the activity. Furthermore, due to significant safety profiles, researchers are now interested to explore their anticancer potential. On the other hand, imidazole/benzimidazolebased compounds have been found to have diverse biological and clinical applications due to being structural isosters of naturally occurring nucleotides; which allow such compounds to interact easily with biopolymers of the living system. This property of benzimidazole constituted compounds has created interest in researchers to further explore their biological applications. The connection of these biologically active moieties (silver & azoles) through Ag-NHC bonding provided a biologically enhanced entity that was tested for human colorectal cancer cells (HCT 116). Results N-ipropylbenzimidazole was synthesized by reaction of benzimidazole with ipropyl bromide. The subsequent treatment of the resulting N-alkylbenzimidazole with ortho/meta/para- (bromomethylene) benzene afforded corresponding bis-benzimidazolium bromides (5-7). The counter anion (Br-) of each salt was replaced by hexaflourophosphate (PF6 -) for the ease of handling and further purification (8-10). Each salt (Ligand), in halide form, was further allowed to react with Ag2O with stirring at room temperature for a period of two days to synthesize dinuclear Ag(I)-NHC complexes (11-13). All synthesized compounds were characterized by spectroscopic techniques and microanalysis. Molecular structures of compounds 5, 9 & 10 were established through single crystal x-ray diffraction technique. All the compounds were assessed for their anti-proliferation test on human colorectal cancer cell line (HCT 116). Results showed that the ligands (5-10) showed mild to negligible cytotoxicity on HCT 116 cells whereas respective silver complexes (11-13) exhibited dose dependent cytotoxicity towards the colon cancer cells with IC50 ranges between 9.7 to 44.5 μM. Interestingly, the complex 13 having para-xylyl spacer was found the most active (IC50 9.7 μM) that verifies our previously reported results. Conclusions All the bis-benzimidazolium salts (8-10) were found inactive whereas after bonding with silver cations, the Ag(I)-NHC complexes (11-13) showed a dose dependent cytotoxic activity. This proved that silver practice an important role in death of cancer cells. Also, the N-alkyl/aryl substitutions and ortho/metal/para xylyl units regulate the cytotoxicity. Based on the previous and current results it can be concluded that the dinuclear Ag(I)-NHC complexes are potential anticancer agents and could probably be the potential source of chemotherapeutic drugs.
    Chemistry Central Journal 02/2013; · 1.31 Impact Factor


Available from
Feb 2, 2013