Article

Alantolactone induces apoptosis in glioblastoma cells via GSH depletion, ROS generation, and mitochondrial dysfunction.

Central Research Laboratory, Jilin University Bethune Second Hospital, Changchun, People's Republic of China.
International Union of Biochemistry and Molecular Biology Life (Impact Factor: 2.79). 07/2012; 64(9):783-94. DOI: 10.1002/iub.1068
Source: PubMed

ABSTRACT Glioblastoma multiforme (GBM) is the most malignant and aggressive primary brain tumor in adults. Despite concerted efforts to improve current therapies, the prognosis of glioblastoma remains very poor. Alantolactone, a sesquiterpene lactone compound, has been reported to exhibit antifungal, antibacteria, antihelminthic, and anticancer properties. In this study, we found that alantolactone effectively inhibits growth and triggers apoptosis in glioblastoma cells in a time- and dose-dependent manner. The alantolactone-induced apoptosis was found to be associated with glutathione (GSH) depletion, reactive oxygen species (ROS) generation, mitochondrial transmembrane potential dissipation, cardiolipin oxidation, upregulation of p53 and Bax, downregulation of Bcl-2, cytochrome c release, activation of caspases (caspase 9 and 3), and cleavage of poly (ADP-ribose) polymerase. This alantolactone-induced apoptosis and GSH depletion were effectively inhibited or abrogated by a thiol antioxidant, N-acetyl-L-cysteine, whereas other antioxidant (polyethylene glycol (PEG)-catalase and PEG-superoxide-dismutase) did not prevent apoptosis and GSH depletion. Alantolactone treatment inhibited the translocation of NF-κB into nucleus; however, NF-κB inhibitor, SN50 failed to potentiate alantolactone-induced apoptosis indicating that alantolactone induces NF-κB-independent apoptosis in glioma cells. These findings suggest that the sensitivity of tumor cells to alantolactone appears to results from GSH depletion and ROS production. Furthermore, our in vivo toxicity study demonstrated that alantolactone did not induce significant hepatotoxicity and nephrotoxicity in mice. Therefore, alantolactone may become a potential lead compound for future development of antiglioma therapy.

0 Bookmarks
 · 
86 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Testes-specific protease 50 (TSP50) is aberrantly expressed in many cancer biopsies and plays a crucial role in tumorigenesis, which make it a potential cancer therapeutic target for drug discovery. Here, we constructed a firefly luciferase reporter driven by the TSP50 gene promoter to screen natural compounds capable of inhibiting the expression of TSP50. Then we identified alantolactone, a sesquiterpene lactone, could efficiently inhibit the promoter activity of TSP50 gene, further results revealed that alantolactone also efficiently inhibited the expression of TSP50 in both mRNA and protein levels. Moreover, we found alantolactone could increase the ratio of Bax/Bcl-2, and activate caspase-9 and caspase-3 in the cancer cells with high expression of TSP50, surprisingly, the same effects can also be observed in the same cells just by knockdown of TSP50 gene expression. Furthermore, our results suggested that overexpression of TSP50 decreased the cell sensitivity to alantolactone-induced apoptosis in those cancer cells. Taken together, these results suggest that alantolactone induces mitochondrial-dependent apoptosis at least partially via down-regulation of TSP50 expression.
    Toxicology Letters 11/2013; · 3.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the course of a bioactivity screening of Mediterranean plants, the assessment of neuroprotective properties of Laurus nobilis L. was of interest. Dried leaves were extracted by sonication using CHCl3 as solvent. The CHCl3 parental extract (CHCl3-pe) was fractionated to yield CHCl3 (LnC-1), EtOAc (LnC-2), MeOH (LnC-3) fractions. Each fraction underwent an extensive screening towards human neuroblastoma (SK-N-BE(2)-C, and SH-SY5Y) and rat glioma (C6) cell lines. MTT and SRB cytotoxicity tests were performed. The effect on the plasma membrane integrity was evaluated by assessment of LDH release. The caspase-3 activation enzyme and DNA fragmentation were also evaluated. The oxidant/antioxidant ability of all the extracts were evaluated using different methods. Furthermore, a metabolite profiling of the investigated extracts was carried out by GC-EI-MS. CHCl3-pe contained terpenes, allylphenols, and α-tocopherol. Dehydrocostus lactone was the main constituent. As result of the fractionation technique, the LnC-1 extract was mainly composed of α-tocopherol, whereas the LnC-2 fraction was enriched in guaiane and eudesmane terpenes. The most cytotoxic LnC-2 fraction induced apoptosis; it was ineffective in preventing in vitro free radicals production. Overall, the experimental results support a possible role of LnC-2 preparation as a chemopreventive agent for neuronal cells or other cells of the CNS.
    Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association 10/2013; · 2.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The genus Inula comprises more than one hundred species widespread in temperate regions of Europe and Asia. Uses of this genus as herbal medicines have been first recorded by the Greek and Roman ancient physicians. In the Chinese Pharmacopoeia, from the 20 Inula spp. distributed in China, three are used as Traditional Chinese medicines, named Tumuxiang, Xuanfuhua and Jinfeicao.These medicines are used as expectorants, antitussives, diaphoretics, antiemetics, and bactericides. Moreover, I. helenium L. which is mentioned in Minoan, Mycenaean, Egyptian/Assyrian pharmacotherapy and Chilandar Medical Codex, is good to treat neoplasm, wound, freckles and dandruff. Many other Inula spp. are used in Ayurvedic and Tibetan traditional medicinal systems for the treatment of diseases such as bronchitis, diabetes, fever, hypertension and several types of inflammation. This review is a critical evaluation of the published data on the more relevant ethnopharmacological and medicinal uses of Inula spp. and on their metabolites biological activities. This study allows the identification of the ethnopharmacological knowledge of this genus and will provide insight into the emerging pharmacological applications of Inula spp. facilitating the prioritirization of future investigations. The corroboration of the ethnopharmacological applications described in the literature with proved biological activities of Inula spp. secondary metabolites will also be explored. The major scientific databases including ScienceDirect, Medline, Scopus and Web of Science were queried for information on the genus Inula using various keyword combinations, more than 180 papers and patents related to the genus Inula were consulted. The International Plant Name Index was also used to confirm the species names. Although the benefits of Inula spp. are known for centuries, there are insufficient scientific studies to certify it. Most of the patents are registered by Chinese researchers, proving the traditional use of these plants in their country. Although a total of sixteen Inula species were reported in the literature to have ethnopharmacological applications, the species I. cappa (Buch.-Ham. ex D.Don) DC., I. racemosa Hook.f., I. viscosa (L.) Aiton [actually the accepted name is Dittrichia viscosa (L.) Greuter], I. helenium, I. britannica L. and I. japonica Thunb. are the most frequently cited ones since their ethnopharmacological applications are vast. They are used to treat a large spectrum of disorders, mainly respiratory, digestive, inflammatory, dermatological, cancer and microbial diseases. Fifteen Inula spp. crude extracts were investigated and showed interesting biological activities. From these, only 7 involved extracts of the reported spp. used in traditional medicine and 6 of these were studied to isolate the bioactive compounds. Furthermore, 90 bioactive compounds were isolated from 16 Inula spp. The characteristic compounds of the genus, sesquiterpene lactones, are involved in a network of biological effects, and in consequence, the majority of the experimental studies are focused on these products, especially on their cytotoxic and anti-inflammatory activities. The review shows the chemical composition of the genus Inula and presents the pharmacological effects proved by in vitro and in vivo experiments, namely the cytotoxic, anti-inflammatory (with focus on nitric oxide, arachidonic acid and NF-κB pathways), antimicrobial, antidiabetic and insecticidal activities. Although there are ca. 100 species in the genus Inula, only a few species have been investigated so far. Eight of the sixteen Inula spp. with ethnopharmacological application had been subjected to biological evaluations and/or phytochemical studies. Despite I. royleana DC. and I. obtusifolia A.Kerner are being used in traditional medicine, as far as we are aware, these species were not subjected to phytochemical or pharmacological studies. The biological activities exhibited by the compounds isolated from Inula spp., mainly anti-inflammatory and cytotoxic, support some of the described ethnopharmacological applications. Sesquiterpene lactone derivatives were identified as the most studied class, being britannilactone derivatives the most active ones and present high potential as anti-inflammatory drugs, although, their pharmacological effects, dose-response relationship and toxicological investigations to assess potential for acute or chronic adverse effects should be further investigated. The experimental results are promising, but the precise mechanism of action, the compound or extract toxicity, and the dose to be administrated for an optimal effect need to be investigated. Also human trials (some preclinical studies proved to be remarkable) should be further investigated. The genus Inula comprises species useful not only in medicine but also in other domains which makes it a high value-added plant.
    Journal of ethnopharmacology 04/2014; · 2.32 Impact Factor

Full-text

View
0 Downloads