Article

Myocardial Notch Signaling Reprograms Cardiomyocytes to a Conduction-Like Phenotype

Cardiovascular Institute, University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA 19104, USA.
Circulation (Impact Factor: 14.95). 07/2012; 126(9):1058-66. DOI: 10.1161/CIRCULATIONAHA.112.103390
Source: PubMed

ABSTRACT Notch signaling has previously been shown to play an essential role in regulating cell fate decisions and differentiation during cardiogenesis in many systems including Drosophila, Xenopus, and mammals. We hypothesized that Notch may also be involved in directing the progressive lineage restriction of cardiomyocytes into specialized conduction cells.
In hearts where Notch signaling is activated within the myocardium from early development onward, Notch promotes a conduction-like phenotype based on ectopic expression of conduction system-specific genes and cell autonomous changes in electrophysiology. With the use of an in vitro assay to activate Notch in newborn cardiomyocytes, we observed global changes in the transcriptome, and in action potential characteristics, consistent with reprogramming to a conduction-like phenotype.
Notch can instruct the differentiation of chamber cardiac progenitors into specialized conduction-like cells. Plasticity remains in late-stage cardiomyocytes, which has potential implications for engineering of specialized cardiovascular tissues.

0 Followers
 · 
124 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: During development, cardiogenesis is orchestrated by a family of heart progenitors that build distinct regions of the heart. Each region contains diverse cell types that assemble to form the complex structures of the individual cardiac compartments. Cardiomyocytes are the main cell type found in the heart and ensure contraction of the chambers and efficient blood flow throughout the body. Injury to the cardiac muscle often leads to heart failure due to the loss of a large number of cardiomyocytes and its limited intrinsic capacity to regenerate the damaged tissue, making it one of the leading causes of morbidity and mortality worldwide. In this Primer we discuss how insights into the molecular and cellular framework underlying cardiac development can be used to guide the in vitro specification of cardiomyocytes, whether by directed differentiation of pluripotent stem cells or via direct lineage conversion. Additional strategies to generate cardiomyocytes in situ, such as reactivation of endogenous cardiac progenitors and induction of cardiomyocyte proliferation, will also be discussed. © 2014. Published by The Company of Biologists Ltd.
    Development 12/2014; 141(23):4418-31. DOI:10.1242/dev.091538 · 6.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Over the last decade, advancements in stem cell biology have yielded a variety of sources for stem cell-based cardiovascular investigation. Stem cell behavior, whether to maintain its stable state of pluripotency or to prime toward the cardiovascular lineage is governed by a set of coordinated interactions between epigenetic, transcriptional, and translational mechanisms. The science of incorporating genes (genomics), RNA (transcriptomics), proteins (proteomics), and metabolites (metabolomics) data in a specific biological sample is known as systems biology. Integrating systems biology in progression with stem cell biologics can contribute to our knowledge of mechanisms that underlie pluripotency maintenance and guarantee fidelity of cardiac lineage specification. This review provides a brief summarization of OMICS-based strategies including transcriptomics, proteomics, and metabolomics used to understand stem cell fate and to outline molecular processes involved in heart development. Additionally, current efforts in cardioregeneration based on the "one-size-fits-all" principle limit the potential of individualized therapy in regenerative medicine. Here, we summarize recent studies that introduced systems biology into cardiovascular clinical outcomes analysis, allowing for predictive assessment for disease recurrence and patient-specific therapeutic response.
    Stem Cell Reviews and Reports 09/2014; DOI:10.1007/s12015-014-9557-5 · 3.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rationale: Proper patterning of the atrioventricular canal (AVC) is essential for delay of electrical impulses between atria and ventricles, and defects in AVC maturation can result in congenital heart disease. Objective: To determine the role of canonical Wnt signaling in the myocardium during AVC development. Methods and Results: We utilized a novel allele of β-catenin that preserves β-catenin's cell adhesive functions but disrupts canonical Wnt signaling, allowing us to probe the effects of Wnt loss of function independently.¬ We show that loss of canonical Wnt signaling in the myocardium results in tricuspid atresia with hypoplastic right ventricle associated with loss of AVC myocardium. In contrast, ectopic activation of Wnt signaling was sufficient to induce formation of ectopic AV junction-like tissue as assessed by morphology, gene expression, and electrophysiologic criteria. Aberrant AVC development can lead to ventricul¬¬ar preexcitation, a characteristic feature of Wolff-Parkinson-White syndrome. We demonstrate that postnatal activation of Notch signaling downregulates canonical Wnt targets within the AV junction. Stabilization of β-catenin protein levels can rescue Notch-mediated ventricular preexcitation and dysregulated ion channel gene expression. Conclusions: Our data demonstrate that myocardial canonical Wnt signaling is an important regulator of AVC maturation and electrical programming upstream of Tbx3. Our data further suggests that ventricular preexcitation may require both morphologic patterning defects, as well as myocardial lineage reprogramming, to allow robust conduction across accessory pathway tissue.
    Circulation Research 11/2014; DOI:10.1161/CIRCRESAHA.116.304731 · 11.09 Impact Factor