Article

Small molecule modulators of aggregation in synthetic melanin polymerizations.

Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland St., Oberlin, OH 44074, USA.
Bioorganic & medicinal chemistry letters (Impact Factor: 2.65). 07/2012; 22(17):5503-7. DOI: 10.1016/j.bmcl.2012.07.027
Source: PubMed

ABSTRACT There are numerous potential applications for melanin-binding compounds, and new methods are of interest to identify melanin-binding agents. A portion of the polymerization to eumelanin, the black to brown pigment in humans, is thought to be supramolecular aggregation of nanoparticles derived from dihydroxyindoles. Starting with chloroquine, a known eumelanin-binding compound, the ability of small molecules to influence aggregation in synthetic eumelanin polymerizations was investigated. Twenty-eight compounds were tested, including pharmaceuticals, dyes, aromatics, and amines. Compounds that either accelerate or delay the appearance of macroscopic particles in synthetic eumelanin polymerizations were uncovered.

0 Bookmarks
 · 
62 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biodegradable electronics represents an attractive and emerging paradigm in medical devices by harnessing simultaneous advantages afforded by electronically active systems and obviating issues with chronic implants. Integrating practical energy sources that are compatible with the envisioned operation of transient devices is an unmet challenge for biodegradable electronics. Although high-performance energy storage systems offer a feasible solution, toxic materials and electrolytes present regulatory hurdles for use in temporary medical devices. Aqueous sodium-ion charge storage devices combined with biocompatible electrodes are ideal components to power next-generation biodegradable electronics. Here, we report the use of biologically derived organic electrodes composed of melanin pigments for use in energy storage devices. Melanins of natural (derived from Sepia officinalis) and synthetic origin are evaluated as anode materials in aqueous sodium-ion storage devices. Na(+)-loaded melanin anodes exhibit specific capacities of 30.4 ± 1.6 mAhg(-1). Full cells composed of natural melanin anodes and λ-MnO2 cathodes exhibit an initial potential of 1.03 ± 0.06 V with a maximum specific capacity of 16.1 ± 0.8 mAhg(-1). Natural melanin anodes exhibit higher specific capacities compared with synthetic melanins due to a combination of beneficial chemical, electrical, and physical properties exhibited by the former. Taken together, these results suggest that melanin pigments may serve as a naturally occurring biologically derived charge storage material to power certain types of medical devices.
    Proceedings of the National Academy of Sciences 12/2013; · 9.81 Impact Factor