Article

LRRC4 Inhibits Glioma Cell Growth and Invasion Through a miR-185- Dependent Pathway.

Cancer Research Institute, Central South University, Changsha 410078 Hunan, P.R. China. .
Current cancer drug targets (Impact Factor: 5.13). 07/2012; 12(8):1032-42.
Source: PubMed

ABSTRACT Leucine-rich repeat (LRR) genes encode transmembrane proteins that are essential for normal brain development and are often dysregulated in central nervous system tumors. Leucine-rich repeat C4 (LRRC4) is a member of the LRR protein superfamily and specifically expressed in brain tissue. Importantly it acts as a tumor suppressor in the pathogenesis of malignant gliomas. However, the molecular mechanisms by which LRRC4 regulates glioma tumorigenesis are largely unknown. In this report, we found that miR-185 is markedly upregulated by LRRC4. We also found that miR-185 was downregulated in glioma, and overexpression of miR-185 inhibited glioma cell invasion. Low expressions of LRRC4 and miR-185 were associated with a poor outcome in glioma patients. Further investigation revealed that LRRC4 mediated its tumor suppressor function by regulating miR-185 targets CDC42 and RhoA. LRRC4 overexpression inhibited glioma cell invasion through miR-185-mediated CDC42 and RhoA direct regulation and VEGFA indirect regulation. Together, our findings suggest that the altered expression of the tumor suppressor LRRC4 may be an important event that leads to the dysregulation of miR-185 in human gliomas. LRRC4 and miR-185 may also be good prognostic markers and therapeutic targets in glioma.

2 Bookmarks
 · 
115 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: miR-200b has been reported to be a tumor suppressor and a promising therapeutic target in cancer. miR-200b has been associated with epithelial-mesenchymal transition and chemo-resistance in cancer. The aim of this study is to investigate the expression of miR-200b, its prognostic roles and its potential targets in breast cancer. qRT-PCR was used to detect miR-200b expression in breast cancer tissues and cell lines. In situ hybridization of miR-200b on tissue microarray including 134 breast cancer samples was used to evaluate its prognostic role. Novel targets of miR-200b in breast cancer were predicted and confirmed by luciferase reporter assay and western bloting. Immunohistochemical staining was used for protein detection. The biological effects of miR-200b in breast cancer cells were further confirmed by ectopic expression of its mimics followed by MTT assay and invasion test. miR-200b was downregulated in breast cancer tissues and cell lines and its low-expression correlated with poor outcome in breast cancer patients. Members of RAB family, RAB21, RAB23, RAB18 and RAB3B were predicted to be the targets of miR-200b. The luciferase reporter assay was performed to certificate this prediction. The expressions of RAB21, RAB23, RAB18 and RAB3B were suppressed by transfection of miR-200b in breast cancer cells. Over-expression of miR-200b or knock-down of RAB21, RAB23, RAB18 and RAB3B inhibited breast cancer cell proliferation and invasion in vitro. Our study provides evidence that miR-200b is a prognostic factor in breast cancer targeting multiple members of RAB family. MiR-200b could be a potential therapeutic target in breast cancer.
    Journal of Translational Medicine 01/2014; 12(1):17. · 3.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glioblastoma multiforme (GBM) is the most malignant and frequent brain tumor, with an aggressive growth pattern and poor prognosis despite best treatment modalities. Although chemotherapy with temozolomide (TMZ) may restrain tumor growth for some months, TMZ resistance is also common and accounts for many treatment failures. Research into microRNA's role in GBM has shown that microRNAs play a key regulatory role in the GBM, making it a potential therapeutic target. In this study, we demonstrated that the lower expression of miR-181a/b/c/d subunits contributes to astrocytoma tumorigenesis, and their overexpression could inhibit the invasive proliferation of glioblastoma cells by targeting Rap1B-mediated cytoskeleton remodeling and related molecular (Cdc42, RhoA and N-cadherin) changes, suggesting that miR-181 was a critical regulator and might be an important target for glioblastoma treatment. TMZ as a standard chemotherapeutic agent for GBM inhibited the Rap1B expression and actin cytoskeleton remodeling to exert its cell killing by upregulating miR-181a/b/c/d subunits; conversely, each miR-181a/b/c/d subunit enhanced the chemosensitivity of TMZ in glioblastoma cells.
    Medical Oncology 04/2014; 31(4):892. · 2.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gastric cancer remains the second leading cause of cancer deaths worldwide. Resistance to chemotherapy is a significant barrier for effective cancer treatment. Here, we identified miR-185 to be a contributor to chemosensitivity in gastric cancer. We observed low levels of miR-185 in gastric cancer cell lines and clinical tissues, compared with gastric epithelium cell line and noncancerous tissues. Furthermore, enforced expression of miR-185 increased the sensitivity of gastric cancer cells to low-dose chemotherapeutic agents, which alone cannot trigger significant apoptosis. Conversely, knockdown of endogenous miR-185 prevented high-dose chemotherapy-induced apoptosis. In elucidating the molecular mechanism by which miR-185 participated in the regulation of chemosensitivity in gastric cancer, we discovered that apoptosis repressor with caspase recruitment domain (ARC) is a direct target of miR-185. The role of miR-185 was confirmed in gastric tumor xenograft model. The growth of established tumors was suppressed by a combination therapy using enforced miR-185 expression and a low dose of anticancer drugs. Finally, we found that RUNX3 (Runt-related transcription factor) was involved in the activation of miR-185 at the transcriptional level. Taken together, our results reveal that RUNX3, miR-185 and ARC regulate the sensitivity of gastric cancer cells to chemotherapy.
    Cell Death & Disease 01/2014; 5:e1197. · 6.04 Impact Factor

Full-text

View
5 Downloads
Available from
Jul 4, 2014