Article

Convergent functional genomics of anxiety disorders: translational identification of genes, biomarkers, pathways and mechanisms.

Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
Translational psychiatry 05/2011; 1:e9. DOI: 10.1038/tp.2011.9
Source: PubMed

ABSTRACT Anxiety disorders are prevalent and disabling yet understudied from a genetic standpoint, compared with other major psychiatric disorders such as bipolar disorder and schizophrenia. The fact that they are more common, diverse and perceived as embedded in normal life may explain this relative oversight. In addition, as for other psychiatric disorders, there are technical challenges related to the identification and validation of candidate genes and peripheral biomarkers. Human studies, particularly genetic ones, are susceptible to the issue of being underpowered, because of genetic heterogeneity, the effect of variable environmental exposure on gene expression, and difficulty of accrual of large, well phenotyped cohorts. Animal model gene expression studies, in a genetically homogeneous and experimentally tractable setting, can avoid artifacts and provide sensitivity of detection. Subsequent translational integration of the animal model datasets with human genetic and gene expression datasets can ensure cross-validatory power and specificity for illness. We have used a pharmacogenomic mouse model (involving treatments with an anxiogenic drug--yohimbine, and an anti-anxiety drug--diazepam) as a discovery engine for identification of anxiety candidate genes as well as potential blood biomarkers. Gene expression changes in key brain regions for anxiety (prefrontal cortex, amygdala and hippocampus) and blood were analyzed using a convergent functional genomics (CFG) approach, which integrates our new data with published human and animal model data, as a translational strategy of cross-matching and prioritizing findings. Our work identifies top candidate genes (such as FOS, GABBR1, NR4A2, DRD1, ADORA2A, QKI, RGS2, PTGDS, HSPA1B, DYNLL2, CCKBR and DBP), brain-blood biomarkers (such as FOS, QKI and HSPA1B), pathways (such as cAMP signaling) and mechanisms for anxiety disorders--notably signal transduction and reactivity to environment, with a prominent role for the hippocampus. Overall, this work complements our previous similar work (on bipolar mood disorders and schizophrenia) conducted over the last decade. It concludes our programmatic first pass mapping of the genomic landscape of the triad of major psychiatric disorder domains using CFG, and permitted us to uncover the significant genetic overlap between anxiety and these other major psychiatric disorders, notably the under-appreciated overlap with schizophrenia. PDE10A, TAC1 and other genes uncovered by our work provide a molecular basis for the frequently observed clinical co-morbidity and interdependence between anxiety and other major psychiatric disorders, and suggest schizo-anxiety as a possible new nosological domain.

0 Bookmarks
 · 
154 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Convergent functional genomics (CFG) is a translational methodology that integrates in a Bayesian fashion multiple lines of evidence from studies in human and animal models to get a better understanding of the genetics of a disease or pathological behavior. Here the integration of data sets that derive from forward genetics in animals and genetic association studies including genome wide association studies (GWAS) in humans is described for addictive behavior. The aim of forward genetics in animals and association studies in humans is to identify mutations (e.g. SNPs) that produce a certain phenotype; i.e. "from phenotype to genotype". Most powerful in terms of forward genetics is combined quantitative trait loci (QTL) analysis and gene expression profiling in recombinant inbreed rodent lines or genetically selected animals for a specific phenotype, e.g. high vs. low drug consumption. By Bayesian scoring genomic information from forward genetics in animals is then combined with human GWAS data on a similar addiction-relevant phenotype. This integrative approach generates a robust candidate gene list that has to be functionally validated by means of reverse genetics in animals; i.e. "from genotype to phenotype". It is proposed that studying addiction relevant phenotypes and endophenotypes by this CFG approach will allow a better determination of the genetics of addictive behavior.
    01/2013; 1:18. DOI:10.1186/2193-9616-1-18
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Male and female vertebrates typically differ in a range of characteristics, from morphology to physiology to behavior, which are influenced by factors such as the social environment and the internal hormonal and genetic milieu. However, sex differences in gene expression profiles in the brains of vertebrates are only beginning to be understood. Fishes provide a unique complement to studies of sex differences in mammals and birds given that fish show extreme plasticity and lability of sexually dimorphic characters and behaviors during development and even adulthood. Hence, teleost models can give additional insight into sexual differentiation. The goal of this study is to identify neurotranscriptomic mechanisms for sex differences in the brain.
    BMC Genomics 10/2014; 15(1):905. DOI:10.1186/1471-2164-15-905 · 4.04 Impact Factor

Full-text (3 Sources)

Download
65 Downloads
Available from
May 22, 2014