Article

A novel mass assay to quantify the bioactive lipid PtdIns3P in various biological samples.

*Inserm, U1048 and Université Toulouse 3, I2MC, Avenue Jean Poulhès BP84225, 31432 Toulouse Cedex 04, France.
Biochemical Journal (Impact Factor: 4.78). 07/2012; 447(1):17-23. DOI: 10.1042/BJ20120945
Source: PubMed

ABSTRACT PtdIns3P is recognized as an important player in the control of the endocytotic pathway and in autophagy. Recent data also suggest that PtdIns3P contributes to molecular mechanisms taking place at the plasma membrane and at the midbody during cytokinesis. This lipid is present in low amounts in mammalian cells and remains difficult to quantify either by traditional techniques based on radiolabelling followed by HPLC to separate the different phosphatidylinositol monophosphates, or by high-sensitive liquid chromatography coupled to MS, which is still under development. In the present study, we describe a mass assay to quantify this lipid from various biological samples using the recombinant PtdIns3P 5-kinase, PIKfyve. Using this assay, we show an increase in the mass level of PtdIns3P in mouse and human platelets following stimulation, loss of this lipid in Vps34-deficient yeasts and its relative enrichment in early endosomes isolated from BHK cells.

0 Bookmarks
 · 
128 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Natural killer (NK) cells are cytotoxic innate lymphoid cells that are involved in immune defense. NK cell reactivity is controlled in part by MHC class I recognition by inhibitory receptors, but the underlying molecular mechanisms remain undefined. Using a mouse model of conditional deletion in NK cells, we show here that the protein tyrosine phosphatase SHP-1 is essential for the inhibitory function of NK cell MHC class I receptors. In the absence of SHP-1, NK cells are hyporesponsive to tumour cells in vitro and their early Ca(2+) signals are compromised. Mice without SHP-1 in NK cells are unable to reject MHC class I-deficient transplants and to control tumours in vivo. Thus, the inhibitory activity of SHP-1 is needed for setting the threshold of NK cell reactivity.
    Nature Communications 10/2014; 5:5108. DOI:10.1038/ncomms6108 · 10.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phosphoinositides (PIs) are minor lipid components of cellular membranes that play critical roles in membrane dynamics, trafficking, and cellular signaling. Among the seven naturally occurring PIs, the monophosphate phosphatidylinositol 3-phosphate (PtdIns3P) and the bisphosphate phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] have been mainly associated with endosomes and endosomal functions. Metabolic labeling and HPLC analysis revealed that a bulk of PtdIns3P is constitutively present in cells, making it the only detectable product of the enzymes phosphoinositide 3-kinases in unstimulated, normal cells. The use of specific tagged-PtdIns3P-binding domains later demonstrated that this constitutive PtdIns3P accumulates in endosomes where it critically regulates trafficking and membrane dynamics.
    Methods in enzymology 01/2014; 535:75-91. DOI:10.1016/B978-0-12-397925-4.00005-5 · 1.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PtdIns5P is a lipid messenger acting as a stress-response mediator in the nucleus, and known to maintain cell activation through traffic alterations upon bacterial infection. Here, we show that PtdIns5P regulates actin dynamics and invasion via recruitment and activation of the exchange factor Tiam1 and Rac1. Restricted Rac1 activation results from the binding of Tiam1 DH-PH domains to PtdIns5P. Using an assay that mimics Rac1 membrane anchoring by using Rac1-His and liposomes containing Ni(2+)-NTA modified lipids, we demonstrate that intrinsic Tiam1 DH-PH activity increases when Rac1 is anchored in a PtdIns5P-enriched environment. This pathway appears to be general since it is valid in different pathophysiological models: receptor tyrosine kinase activation, bacterial phosphatase IpgD expression and the invasive NPM-ALK(+) lymphomas. The discovery that PtdIns5P could be a keystone of GTPases and cytoskeleton spatiotemporal regulation opens important research avenues towards unravelling new strategies counteracting cell invasion.
    Nature Communications 06/2014; 5:4080. DOI:10.1038/ncomms5080 · 10.74 Impact Factor

Preview (2 Sources)

Download
3 Downloads
Available from