Article

Swedish guidelines on the management of community-acquired pneumonia in immunocompetent adults-Swedish Society of Infectious Diseases 2012

Department of Infectious Diseases, Karolinska University Hospital , Stockholm.
Scandinavian Journal of Infectious Diseases (Impact Factor: 1.64). 07/2012; 44(12). DOI: 10.3109/00365548.2012.700120
Source: PubMed

ABSTRACT This document presents the 2012 evidence based guidelines of the Swedish Society of Infectious Diseases for the in- hospital management of adult immunocompetent patients with community-acquired pneumonia (CAP). The prognostic score 'CRB-65' is recommended for the initial assessment of all CAP patients, and should be regarded as an aid for decision-making concerning the level of care required, microbiological investigation, and antibiotic treatment. Due to the favourable antibiotic resistance situation in Sweden, an initial narrow-spectrum antibiotic treatment primarily directed at Streptococcus pneumoniae is recommended in most situations. The recommended treatment for patients with severe CAP (CRB-65 score 2) is penicillin G in most situations. In critically ill patients (CRB-65 score 3-4), combination therapy with cefotaxime/macrolide or penicillin G/fluoroquinolone is recommended. A thorough microbiological investigation should be undertaken in all patients, including blood cultures, respiratory tract sampling, and urine antigens, with the addition of extensive sampling for more uncommon respiratory pathogens in the case of severe disease. Recommended measures for the prevention of CAP include vaccination for influenza and pneumococci, as well as smoking cessation.

0 Followers
 · 
168 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Patients with community-acquired pneumonia (CAP) often require hospitalisation. CRB-65 is a simple and useful scoring system to predict mortality. However, prognostic factors such as underlying disease and blood oxygenation are not included despite their potential to increase the performance of CRB-65. The study included 1172 consecutive patients (830 inpatients, 342 outpatients) with CAP. Mortality, sensitivity, specificity, positive predictive value and negative predictive value, and the area under the receiver operating characteristic (ROC) curve with 95% CI were calculated. Prognostic accuracy was evaluated after adding coexisting illnesses according to the Pneumonia Severity Index (malignancy, heart failure, hepatic, renal and cerebrovascular disease) and pulse oximetry (SpO2). Mean age was 65 years, 30-day mortality 7% (inpatients 9%, outpatients 1%). Addition of one point for the presence of ≥1 coexisting condition and one point for SpO2 <90% increased the area under the ROC curve of CRB-65 from 0.82 (95% CI 0.77 to 0.85) to 0.87 (95% CI 0.84 to 0.90; p<0.0001). Modification of CRB-65 by including hypoxaemia and presence of specified underlying diseases increased the scoring system's prognostic accuracy while retaining its independence of laboratory tests. DS CRB-65 may have the potential to further facilitate site of care decision for patients with CAP.
    05/2014; 1(1):e000038. DOI:10.1136/bmjresp-2014-000038
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background We report here on 14438 Streptococcus pneumoniae and 14770 Haemophilus influenzae isolates collected from 560 centres globally between 2004 and 2012 as a part of the Tigecycline Evaluation and Surveillance Trial (T.E.S.T.).MethodsMIC testing was performed using broth microdilution methods as described by the Clinical and Laboratory Standards Institute (CLSI) using CLSI-approved breakpoints; US Food and Drug Administration breakpoints were used for tigecycline as CLSI breakpoints are not available.ResultsAt least 99% of S. pneumoniae isolates globally were susceptible to levofloxacin, linezolid, tigecycline or vancomycin. Penicillin resistance was observed among 14.8% of S. pneumoniae and was highest in Asia/Pacific Rim (30.1%) and Africa (27.6%); 23.4% of S. pneumoniae isolates were penicillin-intermediate, which were most common in Africa (37.6%). Minocycline susceptibility among S. pneumoniae decreased by 20% between 2004-2008 and 2009-2012. High (>98.5%) susceptibility was reported among H. influenzae to all antimicrobial agents on the T.E.S.T. panel excluding ampicillin, to which only 78.3% were susceptible. ß-lactamase production was observed among 20.2% of H. influenzae isolates; 1.5% of isolates were ß-lactamase negative, ampicillin-resistant.Conclusions S. pneumoniae remained highly susceptible to levofloxacin, linezolid, tigecycline and vancomycin while H. influenzae was susceptible to most antimicrobial agents in the testing panel (excluding ampicillin).
    Annals of Clinical Microbiology and Antimicrobials 11/2014; 13(1):52. DOI:10.1186/s12941-014-0052-2 · 1.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite recent advances in microbiological techniques, the etiology of community-acquired pneumonia (CAP) is still not well described. We applied polymerase chain reaction (PCR) and conventional methods to describe etiology of CAP in hospitalized adults and evaluated their respective diagnostic yields. 267 CAP patients were enrolled consecutively over our 3-year prospective study. Conventional methods (i.e., bacterial cultures, urinary antigen assays, serology) were combined with nasopharyngeal (NP) and oropharyngeal (OP) swab samples analyzed by real-time quantitative PCR (qPCR) for Streptococcus pneumoniae, and by real-time PCR for Mycoplasma pneumoniae, Chlamydophila pneumoniae, Bordetella pertussis and 12 types of respiratory viruses. Etiology was established in 167 (63%) patients with 69 (26%) patients having ≥1 copathogen. There were 75 (28%) pure bacterial and 41 (15%) pure viral infections, and 51 (19%) viral-bacterial coinfections, resulting in 126 (47%) patients with bacterial and 92 (34%) patients with viral etiology. S. pneumoniae (30%), influenza (15%) and rhinovirus (12%) were most commonly identified, typically with ≥1 copathogen. During winter and spring, viruses were detected more frequently (45%, P=.01) and usually in combination with bacteria (39%). PCR improved diagnostic yield by 8% in 64 cases with complete sampling (and by 15% in all patients); 5% for detection of bacteria; 19% for viruses (P=.04); and 16% for detection of ≥1 copathogen. Etiology was established in 79% of 43 antibiotic-naive patients with complete sampling. S. pneumoniae qPCR positive rate was significantly higher for OP swab compared to NP swab (P<.001). Positive rates for serology were significantly higher than for real-time PCR in detecting B. pertussis (P=.001) and influenza viruses (P<.001). Etiology could be established in 4 out of 5 CAP patients with the aid of PCR, particularly in diagnosing viral infections. S. pneumoniae and viruses were most frequently identified, usually with copathogens. Viral-bacterial coinfections were more common than pure infections during winter and spring; a finding we consider important in the proper management of CAP. When swabbing for qPCR detection of S. pneumoniae in adult CAP, OP appeared superior to NP, but this finding needs further confirmation. ClinicalTrials.gov Identifier: NCT01563315 .
    BMC Infectious Diseases 12/2015; 15(1). DOI:10.1186/s12879-015-0803-5 · 2.56 Impact Factor