Article

IL-1β enhances cell adhesion to degraded fibronectin.

*Matrix Dynamics Group, University of Toronto, Toronto, Ontario, Canada;
The FASEB Journal (Impact Factor: 5.7). 07/2012; DOI:10.1096/fj.12-207381
Source: PubMed

ABSTRACT IL-1β is a prominent proinflammatory cytokine that mediates degradation of extracellular matrix proteins through increased expression of matrix metalloproteinases, which involves a signaling pathway in adherent cells that is restricted by focal adhesions. Currently, the mechanism by which IL-1β affects cell adhesion to matrix proteins is not defined, and it is not known whether degraded matrix proteins affect IL-1β signaling. We examined adhesion-related IL-1β signaling in fibroblasts attaching to native or MMP3-degraded fibronectin. IL-1β increased cell attachment, resistance to shear force and the numbers of focal adhesions containing activated β(1) integrins. IL-1β-enhanced attachment required FAK, kindlins 1/2, and talin. MMP3-degraded fibronectin-inhibited IL-1β-enhanced cell adhesion and promoted spontaneous ERK activation that was independent of IL-1β treatment. We conclude that IL-1β enhances the adhesion of anchorage-dependent cells to MMP3-degraded fibronectin, which, in turn, is associated with deregulated cellular responses to IL-1β. These data point to a novel role of IL-1β as a proadhesive signaling molecule in inflammation that employs kindlins and talin to regulate adhesion.-Rajshankar, D., Downey, G. P., McCulloch, C. A. IL-1β enhances cell adhesion to degraded fibronectin.

0 0
 · 
0 Bookmarks
 · 
69 Views
  • [show abstract] [hide abstract]
    ABSTRACT: Adhesion molecules expressed by periodontal connective tissue cells are involved in cell migration, matrix remodeling and inflammatory responses to infection. Currently, the processes by which the biologic activity of these molecules are appropriately regulated in time and space to preserve tissue homeostasis, and to control inflammatory responses and tissue regeneration, are not defined. As cell adhesions are heterogeneous, dynamic, contain a complex group of interacting molecules and are strongly influenced by the type of substrate to which they adhere, we focus on how cell adhesions in periodontal connective tissues contribute to information generation and processing that regulate periodontal structure and function. We also consider how proteomic methods can be applied to discover novel cell-adhesion proteins that could potentially contribute to the form and function of periodontal tissues.
    Periodontology 2000 10/2013; 63(1):48-58. · 4.01 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: IL-1β contributes to connective tissue destruction in part by up-regulating stromelysin-1 (MMP-3), which in fibroblasts is a focal adhesion-dependent process. Protein tyrosine phosphatase-α (PTPα) is enriched in and regulates the formation of focal adhesions, but the role of PTPα in connective tissue destruction is not defined. We first examined destruction of periodontal connective tissues in adult PTPα(+/+) and PTPα(-/-) mice subjected to ligature-induced periodontitis, which increases the levels of multiple cytokines, including IL-1β. Three weeks after ligation, maxillae were processed for morphometry, micro-computed tomography and histomorphometry. Compared with unligated controls, there was ∼1.5-3 times greater bone loss as well as 3-fold reduction of the thickness of the gingival lamina propria and 20-fold reduction of the amount of collagen fibers in WT than PTPα(-/-) mice. Immunohistochemical staining of periodontal tissue showed elevated expression of MMP-3 at ligated sites. Second, to examine mechanisms by which PTPα may regulate matrix degradation, human MMP arrays were used to screen conditioned media from human gingival fibroblasts treated with vehicle, IL-1β or TNFα. Although MMP-3 was upregulated by both cytokines, only IL-1β stimulated ERK activation in human gingival fibroblasts plated on fibronectin. TIRF microscopy and immunoblotting analyses of cells depleted of PTPα activity with the use of various mutated constructs or with siRNA or PTPα(KO) and matched wild type fibroblasts were plated on fibronectin to enable focal adhesion formation and stimulated with IL-1β. These data showed that the catalytic and adaptor functions of PTPα were required for IL-1β-induced focal adhesion formation, ERK activation and MMP-3 release. We conclude that inflammation-induced connective tissue degradation involving fibroblasts requires functionally active PTPα and in part is mediated by IL-1β signaling through focal adhesions.
    PLoS ONE 01/2013; 8(8):e70659. · 3.73 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The α5β1 integrin heterodimer is involved in many cellular processes and is an anti-cancer therapeutic target. Therefore, access to quantities of protein suitable for studies aimed at understanding its biological functions is important. To this end, a large-scale protein expression system, utilizing the recombinant baculovirus/SF9 insect cell expression system, was created to produce the extracellular domain of the α5β1 integrin. An incorporated 8X-histidine tag enabled one-step nickel-column purification. Following sequence confirmation by LC-MS/MS, the conformation of the heterodimer was characterized by native dot blot and negative stain electron microscopy. Cellular transduction inhibition studies confirmed biological activity. The system allows expression and purification of α5β1 integrin in quantities suitable for an array of different experiments including structural biology.
    Protein Expression and Purification 08/2013; · 1.43 Impact Factor