Photonic Gene Circuits by Optically Addressable siRNA-Au Nanoantennas

UCSF/UCB Joint Graduate Group in Bioengineering, Berkeley Sensor & Actuator Center, Department of Bioengineering, University of California-Berkeley , Berkeley, California, United States.
ACS Nano (Impact Factor: 12.88). 07/2012; 6(9):7770-80. DOI: 10.1021/nn301744x
Source: PubMed


The precise perturbation of gene circuits and the direct observation of signaling pathways in living cells are essential for both fundamental biology and translational medicine. Current optogenetic technology offers a new paradigm of optical control for cells; however, this technology relies on permanent genomic modifications with light-responsive genes, thus limiting dynamic reconfiguration of gene circuits. Here, we report precise control of perturbation and reconfiguration of gene circuits in living cells by optically addressable siRNA-Au nanoantennas. The siRNA-Au nanoantennas fulfill dual functions as selectively addressable optical receivers and biomolecular emitters of small interfering RNA (siRNA). Using siRNA-Au nanoantennas as optical inputs to existing circuit connections, photonic gene circuits are constructed in living cells. We show that photonic gene circuits are modular, enabling subcircuits to be combined on-demand. Photonic gene circuits open new avenues for engineering functional gene circuits useful for fundamental bioscience, bioengineering, and medical applications.

1 Follower
46 Reads
  • Source
    • "In demonstrating the potential of photonic gene circuits, Lee et al. showed that two AuNR antenna populations functionalized with small interfering RNA (siRNA) could differentially release siRNA and thus turn gene circuits ‘off’ or ‘on’ upon excitation with light at one nanorod population's resonance wavelength [36]. However, there was some release of siRNA from the nanorod antenna population that was non-resonant at the light wavelength illuminating the cells [36]. This crosstalk suggests the potential importance of developing methods to fabricate NPs with narrower resonances and considering possible spectral changes in a cellular environment when designing the plasmon resonance characteristics of NP antennas. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Metal nanoparticles (NPs) scatter and absorb light in precise, designable ways, making them agile candidates for a variety of biomedical applications. When NPs are introduced to a physiological environment and interact with cells, their physicochemical properties can change as proteins adsorb on their surface and they agglomerate within intracellular endosomal vesicles. Since the plasmonic properties of metal NPs are dependent on their geometry and local environment, these physicochemical changes may alter the NPs' plasmonic properties, on which applications such as plasmonic photothermal therapy and photonic gene circuits are based. Here we systematically study and quantify how metal NPs' optical spectra change upon introduction to a cellular environment in which NPs agglomerate within endosomal vesicles. Using darkfield hyperspectral imaging, we measure changes in the peak wavelength, broadening, and distribution of 100-nm spherical gold NPs' optical spectra following introduction to human breast adenocarcinoma Sk-Br-3 cells as a function of NP exposure dose and time. On a cellular level, spectra shift up to 78.6 ± 23.5 nm after 24 h of NP exposure. Importantly, spectra broaden with time, achieving a spectral width of 105.9 ± 11.7 nm at 95% of the spectrum's maximum intensity after 24 h. On an individual intracellular NP cluster (NPC) level, spectra also show significant shifting, broadening, and heterogeneity after 24 h. Cellular transmission electron microscopy (TEM) and electromagnetic simulations of NPCs support the trends in spectral changes we measured. These quantitative data can help guide the design of metal NPs introduced to cellular environments in plasmonic NP-mediated biomedical technologies.
    Nanoscale Research Letters 08/2014; 9(1):454. DOI:10.1186/1556-276X-9-454 · 2.78 Impact Factor
  • Source
    • "In particular, external laser excitation of nanoparticles can trigger payload release [6], [7], so nanoparticles can act as handles for controlling biological processes. Gold nanorods (NRs) have gained considerable interest for therapeutic applications because they can be selectively excited where tissue is transparent to release multiple species that can impact complex processes [6], [8]–[10] so they have many advantages for controlling blood clotting. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Blood clotting is a precise cascade engineered to form a clot with temporal and spatial control. Current control of blood clotting is achieved predominantly by anticoagulants and thus inherently one-sided. Here we use a pair of nanorods (NRs) to provide a two-way switch for the blood clotting cascade by utilizing their ability to selectively release species on their surface under two different laser excitations. We selectively trigger release of a thrombin binding aptamer from one nanorod, inhibiting blood clotting and resulting in increased clotting time. We then release the complementary DNA as an antidote from the other NR, reversing the effect of the aptamer and restoring blood clotting. Thus, the nanorod pair acts as an on/off switch. One challenge for nanobiotechnology is the bio-nano interface, where coronas of weakly adsorbed proteins can obscure biomolecular function. We exploit these adsorbed proteins to increase aptamer and antidote loading on the nanorods.
    PLoS ONE 07/2013; 8(7):e68511. DOI:10.1371/journal.pone.0068511 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Optical methods for manipulation of cellular function have enabled deconstruction of genetic and neural circuits in vitro and in vivo. Plasmonic gold nanomaterials provide an alternative platform for external optical manipulation of genetic circuits. The tunable absorption of gold nanoparticles in the infrared spectral region and straightforward surface functionalization has led to applications in intracellular delivery and photorelease of short RNAs, recently enabling bidirectional photothermal modulation of specific genes via RNA interference (RNAi). We discuss recent advances in optical gene circuit engineering and plasmonic nanomaterials, as well as future research opportunities and challenges in photothermal gene manipulation.
    ACS Nano 09/2012; 6(9):7548-52. DOI:10.1021/nn3039287 · 12.88 Impact Factor
Show more