The FLAME approach: From dense linear algebra algorithms to high-performance multi-accelerator implementations

Journal of Parallel and Distributed Computing (Impact Factor: 1.12). 01/2011; DOI:10.1016/j.jpdc.2011.10.014

ABSTRACT Parallel accelerators are playing an increasingly important role in scientific computing. However, it is perceived that their weakness nowadays is their reduced “programmability” in comparison with traditional general-purpose CPUs. For the domain of dense linear algebra, we demonstrate that this is not necessarily the case. We show how the libflame library carefully layers routines and abstracts details related to storage and computation, so that extending it to take advantage of multiple accelerators is achievable without introducing platform specific complexity into the library code base. We focus on the experience of the library developer as he develops a library routine for a new operation, reduction of a generalized Hermitian positive definite eigenvalue problem to a standard Hermitian form, and configures the library to target a multi-GPU platform. It becomes obvious that the library developer does not need to know about the parallelization or the details of the multi-accelerator platform. Excellent performance on a system with four NVIDIA Tesla C2050 GPUs is reported. This makes libflame the first library to be released that incorporates multi-GPU functionality for dense matrix computations, setting a new standard for performance.

0 0
1 Bookmark
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Transition to hybrid CPU/GPU platforms in high performance computing is challenging in the aspect of effi- cient utilisation of the heterogeneous hardware and existing optimised software. During recent years, scientific software has been ported to multicore and GPU architectures and now should be reused on hybrid platforms. In this paper, we model the performance of such scientific applications in order to execute them efficiently on hybrid platforms. We consider a hybrid platform as a heterogeneous distributed-memory system and apply the approach of functional performance models, which was originally designed for uniprocessor machines. The functional performance model (FPM) represents the processor speed by a function of problem size and integrates many impor- tant features characterising the performance of the architecture and the application. We demonstrate that FPMs facilitate performance evaluation of scientific applications on hybrid platforms. FPM-based data partitioning algorithms have been proved to be accurate for load balancing on heterogeneous net- works of uniprocessor computers. We apply FPM-based data partitioning to balance the load between cores and GPUs in the hybrid architecture. In our experiments with parallel matrix multiplication, we couple the existing software optimised for multicores and GPUs and achieve high performance of the whole hybrid system. Keywords-performance model; data-parallel application; multicore; GPU; data partitioning.
    2012 IEEE International Conference on Cluster Computing (Cluster 2012). 01/2012;