Mutualistic interactions between vitamin B12‐dependent algae and heterotrophic bacteria exhibit regulation

Environmental Microbiology (Impact Factor: 6.24). 03/2012; 14(6):1466 - 1476. DOI: 10.1111/j.1462-2920.2012.02733.x

ABSTRACT Many algae are auxotrophs for vitamin B12 (cobalamin), which they need as a cofactor for B12-dependent methionine synthase (METH). Because only prokaryotes can synthesize the cobalamin, they must be the ultimate source of the vitamin. In the laboratory, a direct interaction between algae and heterotrophic bacteria has been shown, with bacteria supplying cobalamin in exchange for fixed carbon. Here we establish a system to study this interaction at the molecular level. In a culture of a B12-dependent green alga Chlamydomonas nivalis, we found a contaminating bacterium, identified by 16S rRNA analysis as Mesorhizobium sp. Using the sequenced strain of M. loti (MAFF303099), we found that it was able to support the growth of B12-dependent Lobomonas rostrata, another green alga, in return for fixed carbon. The two organisms form a stable equilibrium in terms of population numbers, which is maintained over many generations in semi-continuous culture, indicating a degree of regulation. However, addition of either vitamin B12 or a carbon source for the bacteria perturbs the equilibrium, demonstrating that the symbiosis is mutualistic and facultative. Chlamydomonas reinhardtii does not require B12 for growth because it encodes a B12-independent methionine synthase, METE, the gene for which is suppressed by addition of exogenous B12. Co-culturing C. reinhardtii with M. loti also results in reduction of METE expression, demonstrating that the bacterium can deliver the vitamin to this B12-independent alga. We discuss the implications of this for the widespread distribution of cobalamin auxotrophy in the algal kingdom.


Available from: Severin Sasso, May 30, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The growing concern regarding the use of agricultural land for the production of biomass for food/feed or energy is dictating the search for alternative biomass sources. Photosynthetic microorganisms grown on marginal or deserted land present a promising alternative to the cultivation of energy plants and thereby may dampen the 'food or fuel' dispute. Microalgae offer diverse utilization routes. A two-stage energetic utilization, using a natural mixed population of algae (Chlamydomonas sp. and Scenedesmus sp.) and mutualistic bacteria (primarily Rhizobium sp.), was tested for coupled biohydrogen and biogas production. The microalgal-bacterial biomass generated hydrogen without sulfur deprivation. Algal hydrogen production in the mixed population started earlier but lasted for a shorter period relative to the benchmark approach. The residual biomass after hydrogen production was used for biogas generation and was compared with the biogas production from maize silage. The gas evolved from the microbial biomass was enriched in methane, but the specific gas production was lower than that of maize silage. Sustainable biogas production from the microbial biomass proceeded without noticeable difficulties in continuously stirred fed-batch laboratory-size reactors for an extended period of time. Co-fermentation of the microbial biomass and maize silage improved the biogas production: The metagenomic results indicated that pronounced changes took place in the domain Bacteria, primarily due to the introduction of a considerable bacterial biomass into the system with the substrate; this effect was partially compensated in the case of co-fermentation. The bacteria living in syntrophy with the algae apparently persisted in the anaerobic reactor and predominated in the bacterial population. The Archaea community remained virtually unaffected by the changes in the substrate biomass composition. Through elimination of cost- and labor-demanding sulfur deprivation, sustainable biohydrogen production can be carried out by using microalgae and their mutualistic bacterial partners. The beneficial effect of the mutualistic mixed bacteria in O2 quenching is that the spent algal-bacterial biomass can be further exploited for biogas production. Anaerobic fermentation of the microbial biomass depends on the composition of the biogas-producing microbial community. Co-fermentation of the mixed microbial biomass with maize silage improved the biogas productivity.
    Biotechnology for Biofuels 04/2015; 8(59):1. DOI:10.1186/s13068-015-0243-x · 6.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: N2-fixing cyanobacteria represent a major source of new nitrogen and carbon for marine microbial communities, but little is known about their ecological interactions with associated microbiota. In this study we investigated the interactions between the unicellular N2-fixing cyanobacterium Cyanothece sp. Miami BG043511 and its associated free-living chemotrophic bacteria at different concentrations of nitrate and dissolved organic carbon and different temperatures. High temperature strongly stimulated the growth of Cyanothece, but had less effect on the growth and community composition of the chemotrophic bacteria. Conversely, nitrate and carbon addition did not significantly increase the abundance of Cyanothece, but strongly affected the abundance and species composition of the associated chemotrophic bacteria. In nitrate-free medium the associated bacterial community was co-dominated by the putative diazotroph Mesorhizobium and the putative aerobic anoxygenic phototroph Erythrobacter and after addition of organic carbon also by the Flavobacterium Muricauda. Addition of nitrate shifted the composition toward co-dominance by Erythrobacter and the Gammaproteobacterium Marinobacter. Our results indicate that Cyanothece modified the species composition of its associated bacteria through a combination of competition and facilitation. Furthermore, within the bacterial community, niche differentiation appeared to play an important role, contributing to the coexistence of a variety of different functional groups. An important implication of these findings is that changes in nitrogen and carbon availability due to, e.g., eutrophication and climate change are likely to have a major impact on the species composition of the bacterial community associated with N2-fixing cyanobacteria.
    Frontiers in Microbiology 01/2015; 5:795. DOI:10.3389/fmicb.2014.00795 · 3.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Algae are primary producers in aquatic ecosystems, where heterotrophic bacteria grow on organics produced by algae and recycle nutrients. Ecological studies have identified the co-occurrence of particular species of algae and bacteria, suggesting the presence of their specific interactions. Algae/bacteria interactions are categorized into nutrient exchange, signal transduction and gene transfer. Studies have examined how these interactions shape aquatic communities and influence geochemical cycles in the natural environment. In parallel, efforts have been made to exploit algae for biotechnology processes, such as water treatment and bioenergy production, where bacteria influence algal activities in various ways. We suggest that better understanding of mechanisms underlying algae/bacteria interactions will facilitate the development of more efficient and/or as-yet-unexploited biotechnology processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Current Opinion in Biotechnology 03/2015; 33C:125-129. DOI:10.1016/j.copbio.2015.02.007 · 8.04 Impact Factor