Oxidation Resistance of Multilayer SiC for Space Vehicle Thermal Protection Systems

Politecnico di Torino, Dipartimento di Scienza dei Materiali e Ingegneria Chimica C. so Duca degli Abruzzi 24, Torino (Italy)
Advanced Engineering Materials (Impact Factor: 1.61). 04/2010; 12(7):617 - 622. DOI: 10.1002/adem.200900328

ABSTRACT The oxidation resistances of different kinds of SiC-based laminates are compared. The materials under investigation are produced by tape casting of green ceramic sheets, followed by stacking of the sheets in a multilayer structure and laminate consolidation by de-binding and sintering. Three kinds of specimens are tested: multilayer SiC with fully dense layers, multilayer SiC integrating porous layers and multilayer composites made by stacking SiC/Cf composite layers. Two kinds of chopped carbon fibres (polyamide coated and uncoated) are used for the manufacture of the composite sheets. The oxidation behaviour is investigated by simultaneous TGA–DTA–MS analysis. Specimens are also submitted to a long-term oxidation treatment (30 h at 1 600 °C in flowing air) and their microstructure and mechanical behaviour compared before and after oxidation. This assessment shows that the integration of porous or composite layers in the multilayer architecture does not worsen the oxidation resistance. In every case the formation of a surface passivating layer prevents major degradation phenomena, so that only small changes in the mechanical features are found after oxidation.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In order to develop further the application of high temperature heat pipe in hypersonic vehicles thermal protection, the principles and characteristics of high temperature heat pipe used in hypersonic vehicles thermal protection were introduced. The methods of numerical simulation, theory analysis and experiment research were utilized to analyze the frozen start-up and steady state characteristic of the heat pipe as well as the machining improvement for fabricating irregularly shaped heat pipe which is suitable for leading edge of hypersonic vehicles. The results indicate that the frozen start-up time of heat pipe is long (10 min) and there exists large temperature difference along the heat pipe (47 °C/cm), but the heat pipe can reduce the temperature in stagnation area of hypersonic vehicles from 1 926 to 982 °C and work normally during 1 000–1 200°C. How to improve the maximum heat transfer capability and reduce the time needed for start-up from frozen state of the heat pipe by optimizing thermostructure such as designing of a novel wick with high performance is the key point in hypersonic vehicles thermal protection of heat pipe. Key wordsthermal protection–high temperature heat pipe–heat transfer limit–start-up time
    Journal of Central South University of Technology 08/2011; 18(4):1278-1284. · 0.36 Impact Factor