A shallow water intercomparison of three numerical wave prediction models (Swim)

Quarterly Journal of the Royal Meteorological Society (Impact Factor: 3.33). 08/2007; 111(470):1087 - 1112. DOI: 10.1002/qj.49711147011

ABSTRACT Three operational shallow water wave models are intercompared for two artificial experiments and verified for a severe storm hindcast, with the objectives of further understanding the effects of the parametrization of shallow water wave processes in numerical models.The models used are the HYPAS (Max-Planck Institute) and GONO (KNMI) coupled-hybrid models, and the BMO (Meteorological Office) coupled-discrete model which are all briefly described. In the first case, depth-dependent fetch-limited wave growth in a steady wind is examined. In the second case a steady onshore wind is specified over an idealized constant slope coastal shelf, and the stationary wave spectra at various depths are intercompared. For the third case the wind fields for the North Sea storms of 18-26 November 1981 were accurately reconstructed and used by each model in its operational configuration to produce a wave hindcast for this period.In case 1 the GONO and BMO models exhibit similar behaviour in the evolution of energy and peak frequency, whereas HYPAS displays less depth attenuation and little variation in peak frequency. In case 2 the energy values at different shelf depths are approximately as predicted in case 1 for HYPAS though rather higher for BMO and GONO. However, GONO and HYPAS show little change in peak frequency with depth here whereas BMO wave spectra become double-peaked with a wind-sea peak migrating to higher frequencies in shallower waters. In case 3, the hindcasts, all models produce qualitatively similar results. the time series of wave height and period agree well with measurements, BMO and HYPAS predicting correct energy levels except at storm peaks and GONO generally overpredicting both at lower energy levels and in a duration-limited strong wind case. the r.m.s. error in wave height at the southern shallow water verification site is 0.5 m for all models, and varies between 0.9 m (GONO) and 1.5m (HYPAS) at the northern deep water site. Some wave spectra are presented and the directional relaxation of wind-sea in each model is illustrated.The results of cases 1 and 2 are readily explained by the formulation of shallow water processes adopted in each model, but it is difficult to isolate and identify these mechanisms in the measured or modelied spectra from the hindcast. It is suggested that future studies involving detailed verification and intercomparison of wave models should be confined to more carefully designed wave-measuring experiments so that less ambiguous results are obtained.

1 Bookmark
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper a new shallow water wave model is described which uses nonlinear dissipation derived from turbulent diffusion as damping mechanism. The source functions of the model are presented in detail. Analytical results of the dynamical equation for simple cases illustrate basic features of the model. Academic test runs in deep and shallow water are performed. The designed cases are identical to the ones used in previous wave model intercomparison studies and thus allow comparison with other wave models. Results of a hindcast of a North Sea storm event illustrate the model behaviour in nonuniform real shallow water systems. In this case we can compare with field data and with the community wave model WAM cy. 4, which has been run parallel to our model. Our study shows that the concept of wave modelling with nonlinear dissipation is consistent with common knowledge of wave evolution in oceanic and shelf sea applications. Ein neues Seegangsmodell für Flachwasser wird beschrieben, welches nichtlineare Dissipation durch turbulente Diffusion als DÄmpfungsmechanismus verwendet. Die Quellfunktionen werden im Detail angegeben. Analytische Lösungen der dynamischen Gleichung in einfachen FÄllen illustrieren prinzipielle Eigenschaften des Modells. Akademische Tests für tiefes und flaches Wasser werden durchgeführt. Die Tests können mit entsprechenden Rechnungen aus früheren Modellvergleichsstudien verglichen werden. Die Nachrechnung eines Nordseesturmes zeigt das Verhalten des Modells in realen nichtuniformen Systemen. Ein Vergleich mit Felddaten und Ergebnissen des Community-Modells WAM cy. 4, welches parallel zum Einsatz gebracht wurde, kann durchgeführt werden. Unsere Studie zeigt, da\ das Konzept der Seegangsmodellierung mit nichtlinearer Dissipation zu Ergebnissen führt, die dem allgemeinen VerstÄndnis von Seegang in globalen und regionalen Anwendungen entsprechen.
    Ocean Dynamics 01/1997; 49(2):431-444. · 1.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: GEOSAT-Altimeterdaten der Meeresoberflchentopographie und der signifikanten Wellenhhen werden mit Ergebnissen eines hydrodynamisch-numerischen Strmungsmodells fr die Nordsee und eines Seegangsmodells fr den Nordeuropischen Schelf verglichen. Fr eine Verifikation des Strmungsmodells werden Daten von Kstenpegeln in der Deutschen Bucht herangezogen. Beim Vergleich der GEOSAT-Wasserstandsdaten mit Modellergebnissen zeigen sich groe Abweichungen, die in erster Linie auf die ungenaue Kenntnis der radialen Bahnkomponente zurckzufhren sind. Nach einer Korrektur dieser Abweichungen betrgt dieRMS-Differenz (Gl. 6.4) noch ca. 55 cm. Sie ist grtenteils auf Geoidvariationen zurckzufhren, die mit dem von der NOAA (National Oceanic and Atmospheric Administration) benutzten Geoidmodell nicht erfat werden. Es wird ein Verfahren vorgestellt, wie dieser Geoidfehler mit Hilfe eines Strmungsmodells verringert werden kann. Nach einer Korrektur des Geoids betrgt dieRMS-Differenz zwischen Satelliten- und Modelldaten im Untersuchungszeitraum weniger als 11 cm.Das Seegangsmodell wird mit Seegangsmessungen an der Forschungsplattform Nordsee verifiziert. Der Vergleich von Rechnung und Messung ergibt dort eineRMS-Differenz von 0,53 m. Eine hnlicheRMS-Differenz wird beim Vergleich von Satelliten-und Modelldaten berechnet. GrereRMS-Differenzen sind auf die ungenaue Erfassung meteorologischer Phnomene sowie auf den nichterfaten in das Untersuchungsgebiet einlaufenden Seegang zurckzufhren.GEOSAT sea surface topography altimeter data and significant wave height are compared with the results of a hydrodynamic numerical current model of the North Sea and a wave model of the North European Shelf. To verify the current model's results, data from tide-gauges in the coastal area of the German Bight are used. The comparison between GEOSAT water level data and the model results shows great differences. These can mainly be attributed to inexact knowledge of the orbit's radial component. After correcting these deviations, theRMS-difference (equation 6.4) is still about 55 cm. This is mostly due to geoid variations which cannot be resolved using the geoid model operated by NOAA (National Oceanic and Atmospheric Administration). A method to reduce this geoid error with the help of a current model is presented. After correcting the geoid for the period of investigation, theRMS-difference between satellite and model data is less than 11 cm.Wave measurements at the North Sea Research Platform (FPN) verify the wave model. Comparison of computation and measurement shows anRMS-difference of 0.53 m. A similarRMS-difference is computed for the comparison between satellite data and model data. HigherRMS-differences are attributed to the incorrect interpretation of meteorological phenomena and unresolved waves entering the area of investigation.
    Ocean Dynamics 06/1990; 43(4):153-180. · 1.76 Impact Factor