Article

LIFE CYLE AND SEXUALITY OF THE FRESHWATER RAPHIDOPHYTE GONYOSTOMUM SEMEN (RAPHIDOPHYCEAE)1

Journal of Phycology (Impact Factor: 2.24). 07/2006; 42(4):859 - 871. DOI: 10.1111/j.1529-8817.2006.00240.x

ABSTRACT Previously unknown aspects in the life cycle of the freshwater flagellate Gonyostomum semen (Ehrenb.) (Raphidophyceae) are described here. This species forms intense blooms in many northern temperate lakes, and has increased in abundance and frequency in northern Europe during the past decades. The proposed life cycle is based on observations of life cycle stages and transitions in cultures. Viable stages of the life cycle were individually isolated and monitored by time-lapse photography. The most common processes undertaken by the isolated cells were: division, fusion followed by division, asexual cyst formation, and sexual cyst formation. Motile cells divided by two different processes. One lasted between 6 and 24 h and formed two cells with vegetative cell size and with or without the same shape. The second division process lasted between 10 and 20 min and formed two identical cells, half the size of the mother cell. Planozygotes formed by the fusion of hologametes subsequently underwent division into two cells. Asexual cyst-like stages were spherical, devoid of a thick wall and red spot, and germinated in 24–48 h. Heterogamete pairs were isogamous, and formed an angle of 0–90° between each other. Planozygote and sexual cyst formation were identified within strains established from one vegetative cell. The identity of these strains, which was studied by an amplified fragment length polymorphism analysis, was correlated with the viability of the planozygote. Resting cyst germination was described using cysts collected in the field. The size and morphology of these cysts were comparable with those formed sexually in culture. The excystment rate was higher at 24°C than at 19 or 16°C, although the cell liberated during germination (germling) was only viable at 16°C. The placement of G. semen within the Raphidophyceae family was confirmed by sequence analysis of a segment of the 18S ribosomal DNA.

1 Bookmark
 · 
137 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The large bloom-forming flagellate Gonyostomum semen has been hypothesized to be inedible to naturally occurring zooplankton due to its large cell size and ejection of long slimy threads (trichocysts) induced by physical stimulation. In a grazing experiment using radiolabelled algae and zooplankton collected from lakes with recurring blooms of G. semen and lakes that rarely experience blooms, we found that Eudiaptomus gracilis and Holopedium gibberum fed on G. semen at high rates, whereas Daphnia cristata and Ceriodaphnia spp. did not. Grazing rates of E. gracilis were similar between bloom-lakes and lakes with low biomass of G. semen, indicating that the ability to feed on G. semen was not a result of local adaptation. The high grazing rates of two of the taxa in our experiment imply that some of the nutrients and energy taken up by G. semen can be transferred directly to higher trophic levels, although the predominance of small cladocerans during blooms may limit the importance of G. semen as a food resource. Based on grazing rates and previous observations on abundances of E. gracilis and H. gibberum, we conclude that there is a potential for grazer control of G. semen and discuss why blooms of G. semen still occur.
    PLoS ONE 01/2013; 8(5):e62557. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Blooms of the nontoxic raphidophyte Gonyostomum semen have shown a recent increase in frequency and distribution in the Fennoscandian region. Due to large cell size and several grazer-avoidance strategies, G. semen is hypothesized to be inedible for most zooplankton species and therefore may constitute a bottleneck for the transfer of energy and nutrients in pelagic food webs. Repression of other phytoplankton through increased competition and induced mortality could further exacerbate this effect. In a field study of four lakes with recurring blooms of G. semen and four lakes without blooms, we found significant differences in community structure between the two lake groups during the bloom period. Bloom-lakes had lower biovolumes of small chrysophytes and chlorophytes and zooplankton assemblages were predominated by small, potentially bacterivorous cladocerans, suggesting a limited availability of edible phytoplankton and an increased importance of microbial pathways during G. semen blooms. Low biovolumes of large cladocerans in bloomlakes may be due to interference of G. semen with filter feeding. Moreover, high abundances of the phantom midge Chaoborus flavicans in bloom-lakes suggest that the flow of energy and nutrients is directed more towards this invertebrate predator than fish. This could have negative impacts on fish populations, especially if bloom periods are prolonged.
    Aquatic Sciences 01/2013; · 2.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biological invasions often cause major perturbations in the environment and are well studied among macroorganisms. Less is known about invasion by free-living microbes. Gonyostomum semen (Raphidophyceae) is a freshwater phytoplankton species that has increased in abundance in Northern Europe since the 1980's and has expanded its habitat range. In this study, we aimed to determine the genetic population structure of G. semen in Northern Europe and to what extent it reflects the species' recent expansion. We sampled lakes from 12 locations (11 lakes) in Norway, Sweden and Finland. Multiple strains from each location were genotyped using Amplified Fragment Length Polymorphism (AFLP). We found low differentiation between locations, and low gene diversity within each location. Moreover, there was an absence of genetic isolation with distance (Mantel test, p = 0.50). According to a Bayesian clustering method all the isolates belonged to the same genetic population. Together our data suggest the presence of one metapopulation and an overall low diversity, which is coherent with a recent expansion of G. semen.
    PLoS ONE 12/2013; 8(12):e82510. · 3.73 Impact Factor

Full-text (2 Sources)

View
91 Downloads
Available from
May 17, 2014