Article

LIFE CYLE AND SEXUALITY OF THE FRESHWATER RAPHIDOPHYTE GONYOSTOMUM SEMEN (RAPHIDOPHYCEAE)

Journal of Phycology (Impact Factor: 2.53). 07/2006; 42(4):859 - 871. DOI: 10.1111/j.1529-8817.2006.00240.x

ABSTRACT Previously unknown aspects in the life cycle of the freshwater flagellate Gonyostomum semen (Ehrenb.) (Raphidophyceae) are described here. This species forms intense blooms in many northern temperate lakes, and has increased in abundance and frequency in northern Europe during the past decades. The proposed life cycle is based on observations of life cycle stages and transitions in cultures. Viable stages of the life cycle were individually isolated and monitored by time-lapse photography. The most common processes undertaken by the isolated cells were: division, fusion followed by division, asexual cyst formation, and sexual cyst formation. Motile cells divided by two different processes. One lasted between 6 and 24 h and formed two cells with vegetative cell size and with or without the same shape. The second division process lasted between 10 and 20 min and formed two identical cells, half the size of the mother cell. Planozygotes formed by the fusion of hologametes subsequently underwent division into two cells. Asexual cyst-like stages were spherical, devoid of a thick wall and red spot, and germinated in 24–48 h. Heterogamete pairs were isogamous, and formed an angle of 0–90° between each other. Planozygote and sexual cyst formation were identified within strains established from one vegetative cell. The identity of these strains, which was studied by an amplified fragment length polymorphism analysis, was correlated with the viability of the planozygote. Resting cyst germination was described using cysts collected in the field. The size and morphology of these cysts were comparable with those formed sexually in culture. The excystment rate was higher at 24°C than at 19 or 16°C, although the cell liberated during germination (germling) was only viable at 16°C. The placement of G. semen within the Raphidophyceae family was confirmed by sequence analysis of a segment of the 18S ribosomal DNA.

1 Bookmark
 · 
170 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Raphidophyte algae (Raphidophyceae) can be divided according to pigment composition and plastid ancestry into two categories, brown- and green-pigmented taxa. We sought to examine if there are any biochemical differences in plastid lipid composition between the two groups. To this end, the composition and positional distribution of fatty acids of the chloroplast lipids, mono- and digalactosyldiacylglycerol (MGDG and DGDG, respectively), were examined using positive-ion electrospray/mass spectrometry (ESI/MS) and electrospray/mass spectrometry/mass spectrometry (ESI/MS/MS). Brown-pigmented strains from the genera Chattonella, Fibrocapsa, and Heterosigma primarily consisted of 20:5/18:4 (sn-1/sn-2) MGDG and 20:5/18:4 DGDG, while isolates of the green-pigmented raphidophyte Gonyostomum semen (Ehrenb.) Diesing contained these as well as 18:3/18:4 MGDG and DGDG, thus underscoring its green algal plastid lineage. Although previously unseen without the regiochemical information provided by ESI/MS/MS, Chattonella subsalsa Biecheler possessed 20:5/18:3 DGDG as a major form, a potential biosynthetic intermediate in the production of 20:5/18:4 DGDG. These results provide a modern interpretation of the fatty acid regiochemistry of MGDG and DGDG.
    Journal of Phycology 02/2011; 47(1). · 2.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biological invasions often cause major perturbations in the environment and are well studied among macroorganisms. Less is known about invasion by free-living microbes. Gonyostomum semen (Raphidophyceae) is a freshwater phytoplankton species that has increased in abundance in Northern Europe since the 1980's and has expanded its habitat range. In this study, we aimed to determine the genetic population structure of G. semen in Northern Europe and to what extent it reflects the species' recent expansion. We sampled lakes from 12 locations (11 lakes) in Norway, Sweden and Finland. Multiple strains from each location were genotyped using Amplified Fragment Length Polymorphism (AFLP). We found low differentiation between locations, and low gene diversity within each location. Moreover, there was an absence of genetic isolation with distance (Mantel test, p = 0.50). According to a Bayesian clustering method all the isolates belonged to the same genetic population. Together our data suggest the presence of one metapopulation and an overall low diversity, which is coherent with a recent expansion of G. semen.
    PLoS ONE 12/2013; 8(12):e82510. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Red tides of Chattonella spp. have caused continuous damage to Japanese aquaculture, however, the life cycle of this organism remains incompletely understood. To further investigate this matter, we assessed genotypes at 14 microsatellite markers in three varieties of Chattonella marina, viz., C. marina var. antiqua, C. marina var. marina, and C. marina var. ovata, to establish whether Chattonella undergoes asexual diploidization or sexual reproduction. After genotyping 287 strains of C. marina, all but one of these strains was shown to be heterozygous for at least some loci, and thus, in the diploid state, suggesting that Chattonella strains undergo sexual reproduction. In addition, we performed single‐cell amplification on ‘small cells’ that are derived from vegetative cells under dark and low‐nutrient conditions. The results indicated the existence of two types of small cells. The ‘Small cell Type 1’ was found to be heterozygous, genotypically equivalent to the vegetative cells, and is therefore diploid. These small cells may change to resting cells (cysts) directly. The ‘Small cell Type 2’ was homozygous at all analyzed loci, suggesting that these small cells are haploid and may be derived by meiosis. As fusion between small cells has previously been observed, the ‘Small cell Type 2’ may be the gamete of Chattonella. We present a construct of the full life cycle of Chattonella marina based on our own and previous results.
    Phycological Research 09/2012; 60:316-325. · 1.09 Impact Factor

Full-text (2 Sources)

Download
120 Downloads
Available from
May 17, 2014