Article

On the Use of Venturi Tubes in Aeration

Firat University, Construction Education Department, Elazig, Turkey.
CLEAN - Soil Air Water (Impact Factor: 2.05). 04/2007; 35(2):183 - 185. DOI: 10.1002/clen.200600025

ABSTRACT The ecological quality of water depends largely on the amount of oxygen that the water can hold. The higher the level of dissolved oxygen, the better the quality of a water system. By measuring dissolved oxygen, scientists determine the quality of water and health of an ecosystem. Oxygen enters water by entrainment of air bubbles. Many industrial and environmental processes involve the aeration of a liquid by such entrainment of air bubbles. Venturi aeration is a method of aeration that has become popular in recent years. When a minimal amount of differential pressure exists between the inlet and outlet sides of a venturi tube, a vacuum (air suction) occurs at the suction holes of the venturi tube. The present paper describes the effect of Reynolds Number, air inlet hole diameter, inlet diameter, pipe length, and angle of pipe downstream of the venturi tube, on the air injection rate. It is observed from the results that venturi tubes have high air injection efficiencies. Therefore, venturi tubes can be used as highly effective aerators in ponds, lakes, fish hatcheries, water treatment plants, etc.

1 Bookmark
 · 
298 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dissolved oxygen (DO) concentration is an important water quality parameter. This paper studies the increase of DO concentration in water by air injection into a horizontal pipe flow. A 3D computational fluid dynamics model was employed to compute the water and bubble mixture flow with a DO transport model. Experiments were also conducted to validate the mathematical model. A relative saturation coefficient relationship was developed with air bubble volume fraction and travel time. An oxygen absorption efficiency is defined,and its relationship with the inlet DO concentration, air bubble volume fraction, and travel time was discussed.
    Journal of Environmental Engineering 06/2013; 139:908-912. · 1.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The dissolved oxygen (DO) concentration is an important index of water quality. This paper studies the dissolved oxygen recovery of the water and bubble mixture pipe flow through two sudden contractions and expansions. A 3-D computational fluid dy- namics model is established to simulate the water and bubble mixture flow with a DO transport model. An experiment is conducted to validate the mathematical model. The mathematical model is used to evaluate the effect of geometric parameters on the head loss coefficient, the relative saturation coefficient and the oxygen absorption efficiency. It is found that the contraction ratio is a signi- ficant influencing factor, other than the relative length and the relative distance. Given the same relative length and relative distance, the head loss coefficient, the relative saturation coefficient and the oxygen absorption efficiency increase with the decrease of the contraction ratio, respectively. Given the same relative length and contraction ratio, the head loss coefficient increases with the in- crease of the relative distance firstly, and then decreases gradually, in contrast, the relative saturation coefficient and the oxygen ab- sorption efficiency decrease with the increase of the relative distance firstly, and then increase gradually, the relative saturation coefficient and the oxygen absorption efficiency are inversely proportional to the head loss coefficient, respectively.
    Journal of Hydrodynamics 10/2014; 26(5). · 0.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effect of aerator module configuration, liquid flow rate and diffuser submergence on oxygen transfer efficiency was examined in a surface aeration system with venturi injectors using the clean water test. Six venturi aerator modules were evaluated and the results indicated that better aeration efficiencies could be achieved by simply changing the way the venturi aerators were connected. Among all the configurations examined (modules a-f), two and three aerators connected in parallel (modules d, e and f) were able to bring more oxygen into water than the others. An increase in liquid flow rate led to an enhancement of the oxygen transfer coefficients, but the improvement was reduced if the liquid flow rate was too high. The oxygen transfer coefficient was found to have a relationship with the depth of diffusing pipes (surface aeration depth) for the surface aeration system and an optimal depth of around 40 cm was obtained from this study.
    Environmental Technology 06/2012; 33(10-12):1289-98. · 1.20 Impact Factor