Article

Simultaneous Immobilization of Bioactives During 3D Powder Printing of Bioceramic Drug‐Release Matrices

Advanced Functional Materials (Impact Factor: 10.44). 05/2010; 20(10):1585 - 1591. DOI: 10.1002/adfm.200901759

ABSTRACT The combination of a degradable bioceramic scaffold and a drug-delivery system in a single low temperature fabrication step is attractive for the reconstruction of bone defects. The production of calcium phosphate scaffolds by a multijet 3D printing system enables localized deposition of biologically active drugs and proteins with a spatial resolution of approximately 300 µm. In addition, homogeneous or localized polymer incorporation during printing with HPMC or chitosan hydrochloride allows the drug release kinetics to be retarded from first to zero order over a period of 3–4 days with release rates in the range 0.68%–0.96% h−1. The reduction in biological activity of vancomycin, heparin, and rhBMP-2 following spraying through the ink jet nozzles is between 1% and 18%. For vancomycin, a further loss of biological activity following incorporation into a cement and subsequent in vitro release is 11%. While previously acknowledged as theoretically feasible, is its shown for the first time that bone grafts with simultaneous geometry, localized organic bioactive loading, and localized diffusion control are a physical reality. This breakthrough offers a new future for patients by providing the required material function to match patient bone health status, site of repair, and age.

Download full-text

Full-text

Available from: Elke Vorndran, Jun 30, 2015
2 Followers
 · 
157 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Porous 3-D scaffolds consisting of gelatine and Si-doped hydroxyapatite were fabricated at room temperature by rapid prototyping. Microscopic characterization revealed a highly homogeneous structure, showing the pre-designed porosity (macroporosity) and a lesser in-rod porosity (microporosity). The mechanical properties of such scaffolds are close to those of trabecular bone of the same density. The biological behavior of these hybrid scaffolds is greater than that of pure ceramic scaffolds without gelatine, increasing pre-osteoblastic MC3T3-E1 cell differentiation (matrix mineralization and gene expression). Since the fabrication process of these structures was carried out at mild conditions, an antibiotic (vancomycin) was incorporated in the slurry before the extrusion of the structures. The release profile of this antibiotic was measured in phosphate-buffered saline solution by high-performance liquid chromatography and was adjusted to a first-order release kinetics. Vancomycin released from the material was also shown to inhibit bacterial growth in vitro. The implications of these results for bone tissue engineering applications are discussed.
    Acta Biomaterialia 01/2015; 15. DOI:10.1016/j.actbio.2014.12.021 · 5.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fabrication of customized implants based on patient bone defect characteristics is required for successful clinical application of bone tissue engineering. Recently a new surgical procedure, tibial tuberosity advancement (TTA), has been used to treat cranial cruciate ligament (CrCL) deficient stifle joints in dogs, which involves an osteotomy and the use of substitutes to restore the bone. However, limitations in the use of non-biodegradable implants have been reported. To overcome these limitations, this study presents the development of a bioceramic customized cage to treat a large domestic dog assigned for TTA treatment. A cage was designed using a suitable topology optimization methodology in order to maximize its permeability whilst maintaining the structural integrity, and was manufactured using low temperature 3D printing and implanted in a dog. The cage material and structure was adequately characterized prior to implantation and the in vivo response was carefully monitored regarding the biological response and patient limb function. The manufacturing process resulted in a cage composed of brushite, monetite and tricalcium phosphate, and a highly permeable porous morphology. An overall porosity of 59.2% was achieved by the combination of a microporosity of approximately 40% and a designed interconnected macropore network with pore sizes of 845 μm. The mechanical properties were in the range of the trabecular bone although limitations in the cage's reliability and capacity to absorb energy were identified. The dog's limb function was completely restored without patient lameness or any adverse complications and also the local biocompatibility and osteoconductivity were improved. Based on these observations it was possible to conclude that the successful design, fabrication and application of a customized cage for a dog CrCL treatment using a modified TTA technique is a promising method for the future fabrication of patient-specific bone implants, although clinical trials are required.
    Biofabrication 03/2014; 6(2):025005. DOI:10.1088/1758-5082/6/2/025005 · 4.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Calcium Phosphate Cements (CPCs) have great potential as carriers for controlled release and vectoring of drugs in the skeletal system. However, a lot of work still has to be done in order to obtain reproducible and predictable release kinetics. A particular aspect that adds complexity to these materials is that they cannot be considered as stable matrices, since their microstructure evolves during the setting reaction. The aim of the present work was to analyze the effect of the microstructural evolution of the CPC during the setting reaction on the release kinetics of the antibiotic doxycycline hyclate, and to assess the effect of the antibiotic on the microstructural development of the CPC. The incorporation of the drug in the CPC modified textural and microstructural properties of the cements by acting as a nucleating agent for the heterogeneous precipitation of hydroxyapatite crystals, but did not affect its antibacterial activity. In vitro release experiments were carried out on readily prepared cements (fresh CPCs), and compared to those of pre-set CPCs. No burst release was found in any formulation. A marked difference in release kinetics was found at the initial stages; the evolving microstructure of fresh CPCs led to a two-step release: initially, when the carrier was merely a suspension of α-TCP particles in water, a faster release was recorded, which rapidly evolved to a zero-order release. In contrast, pre-set CPCs released doxycycline following non-fickian diffusion. The final release percentage was related to the total porosity and entrance pore size of each biomaterial.
    Acta biomaterialia 05/2013; 9(9). DOI:10.1016/j.actbio.2013.05.016 · 5.68 Impact Factor