Article

The Use of Transgenic and Mutant Mice to Study Oxygen Free Radical Metabolism

Department of Pediatrics, University of California, San Francisco, California 94143-0748, USA
Annals of the New York Academy of Sciences (Impact Factor: 4.38). 02/2006; 893(1):95 - 112. DOI: 10.1111/j.1749-6632.1999.tb07820.x

ABSTRACT To distinguish the role of Mn superoxide dismutase (MnSOD) from that of cytoplasmic CuZn superoxide dismutase (CuZnSOD), the mouse MnSOD gene (Sod2) was inactivated by homologous recombination. Sod2−/− mice on a CD1 (outbred) genetic background die within the first 10 days of life (mean, 5.4 days) with a complex phenotype that includes dilated cardiomyopathy, accumulation of lipid in liver and skeletal muscle, metabolic acidosis and ketosis, and a severe reduction in succinate dehydrogenase (complex II) and aconitase (a TCA cycle enzyme) activities in the heart and, to a lesser extent, in other organs. These findings indicate that MnSOD is required to maintain the integrity of mitochondrial enzymes susceptible to direct inactivation by superoxide. On the other hand, Lebovitz et al. reported an independently derived MnSod null mouse (Sod2tmlLeb) on a mixed C57BL/6 and 129Sv background with a different phenotype. Because a difference in genetic background is the most likely explanation for the phenotypic differences, the two mutant lines were crossed into different genetic backgrounds for further analyses. To study the phenotype of Sod2tmlLeb mice CD1 background, the Sod2tmlLeb mice were crossed to CD1 for two generations before the −/+ mice were intercrossed to generate −/− mice. The life span distribution of CD1〈Sod2−/−〉Leb was shifted to the left, indicating a shortened life span on the CD1 background. Furthermore, the CD1〈Sod2−/−〉Leb mice develop metabolic acidosis at an early stage as was observed with CD1〈Sod2−/−〉Cje. When Sod2tmlCje was placed on C57BL/6J (B6) background, the −/− mice were found to die either during midgestation or within the first 4 days after birth. However, when the B6〈Sod2−/+〉Cje were crossed with DBA/2J (D2) for the generation of B6D2F2〈Sod2−/−〉Cje mice, an entirely different phenotype, similar to that described by Lebovitz et al., was observed. The F2 Sod−/− mice were able to survive up to 18 days, and the animals that lived for more than 15 days displayed neurological abnormalities including ataxia and seizures. Their hearts were not as severely affected as were those of the CD1 mice, and neurological degeneration rather than heart defect appears to be the cause of death.

0 Bookmarks
 · 
86 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Several unbiased genome-wide RNA interference (RNAi) screens have pointed to mitochondrial metabolism as the major factor for lifespan regulation. However, conflicting data remain to be clarified concerning the mitochondrial free radical theory of aging (MFRTA). Recently, mTOR (mechanistic target of rapamycin) has been proposed to be the central regulator of aging although how mTOR modulates lifespan is poorly understood. Interestingly, mTOR has been shown to regulate many aspects of mitochondrial function, such as mitochondrial biogenesis, apoptosis, mitophagy and mitochondrial hormesis (mitohormesis) including the retrograde response and mitochondrial unfolded protein response (mito-UPR). Here we discuss the data linking mitochondrial metabolism to mTOR regulation of lifespan, suggesting that hormetic effects may be key to explaining some controversial results regarding the MFRTA. We also discuss the possibility that dysfunction of mitochondrial adaptive responses rather than free radicals per se contributes to the aging process.
    Biological Reviews 03/2014; 90(1). DOI:10.1111/brv.12103 · 10.26 Impact Factor
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Canine demodicosis is a common but exigent noncontagious parasitic dermatosis caused by overpopulation of the host-specific follicular mites of various Demodex species. Receptivity of dogs to demodicosis and progression of the clinical disease are influenced by numerous factors including; genetic defect, alteration of skin's structure and biochemistry, immunological disorders, hormonal status, breed, age, nutritional status, oxidative stress, length of hair coat, stage of oestrus cycle, parturition, endoparasitism and debilitating diseases. Of these, the immune status is thought to be the most significant. Thus, in the present review we intended to edify the immuno-pathological conversions of canine demodicosis. Generalized demodicosis requires a cutaneous environment that is ecologically and immunologically favorable for extreme colonization of demodectic mites. Demodex canis mites can down regulate the CD4+ T cells; possibly by an increased rate of apoptosis or immunological exhaustion of CD4+ T cells. An increased apoptosis of peripheral leukocytes confers progression of the clinical manifestations. Mites induced elevation of TGF-β and inhibition of TNF-α mRNA expression might be a key factor for revealing the difference in the mechanism of onset between localized and generalized demodicosis. Moreover, an elevated serum level of IL-10 could be accountable for the recurrence as well as occurrence of demodicosis in dogs. Over production of reactive oxygen species can corroborate immunological discrepancies in dogs with demodicosis.
    Veterinary Parasitology 03/2014; 203:1-5. DOI:10.1016/j.vetpar.2014.03.008 · 2.55 Impact Factor