Production of therapeutic proteins with baculovirus expression system in insect cell

Institute of Biotechnology, Wonkwang University, Iksan, Korea
Entomological Research (Impact Factor: 0.4). 11/2008; 38(s1):S71 - S78. DOI: 10.1111/j.1748-5967.2008.00177.x


Recombinant DNA technology has a major advantage in that it is capable of producing specific therapeutic proteins on demand in a heterologous expression system. The extent of this notion can be understood when one considers how crucial such proteins are, and how problematic the economical and safe production of such proteins are. Therapeutic recombinant protein production is a fundamental aspect of 21st century biotechnology industries. The improved therapeutic recombinant protein expression systems that use prokaryotic and eukaryotic cells have enabled the development of a multi-billion dollar industry. Among the variety of available heterologous expression systems, the baculovirus-based insect cell expression system has been utilized frequently for the high-level production of therapeutic recombinant proteins. Thus, the baculovirus expression system has been recognized as one of the most powerful expression technologies for production, by virtue of the achievable amount and purity, and the ease of the eukaryotic production process. The majority of therapeutic proteins are glycoproteins originating from humans. The insect-based expression system harbors glycosylation processing pathways, which constitute an advantage over other prokaryotic systems that lack glycosylation. However, there are several drawbacks which must be circumvented in order to establish an efficient system for the production of recombinant proteins. This review presents a brief overview of the perspective, particularly the glycosylation aspect, of the production of therapeutic recombinant proteins via a baculovirus-based insect cell expression system.

Download full-text


Available from: Arshad Jamal,
  • Source
    • "In addition to an increase in productivity induced by growth arrest, cultivation of cells under mild hypothermic conditions offers other relevant advantages: extended culture times (lower cell populations reduce overall nutrient uptake and waste production) [24], decreased O2 demand [25], reduced intermolecular product aggregation [26], increased sensitivity to pH changes [27,28], and a decreased sensitivity to pro-apoptotic agents [29,30]. Protein sialylation [24], acidic glycoforms [31], and antennary structures [31] are relevant quality parameters that are improved in cells cultured under hypothermic conditions. Beyond to providing a good nutritional environment for cell growth, complete replacement of the culture medium provided an adequate culture environment for FVIII expression and maintenance of biological activity. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Hemophilia A is a bleeding disorder caused by deficiency in coagulation factor VIII. Recombinant factor VIII (rFVIII) is an alternative to plasma-derived FVIII for the treatment of hemophilia A. However, commercial manufacturing of rFVIII products is inefficient and costly and is associated to high prices and product shortage, even in economically privileged countries. This situation may be solved by adopting more efficient production methods. Here, we evaluated the potential of transient transfection in producing rFVIII in serum-free suspension HEK 293 cell cultures and investigated the effects of different DNA concentration (0.4, 0.6 and 0.8 μg/106 cells) and repeated transfections done at 34° and 37 °C. We observed a decrease in cell growth when high DNA concentrations were used, but no significant differences in transfection efficiency and in the biological activity of the rFVIII were noticed. The best condition for rFVIII production was obtained with repeated transfections at 34 °C using 0.4 μg DNA/106 cells through which almost 50 IU of active rFVIII was produced six days post-transfection. Serum-free suspension transient transfection is thus a viable option for high-yield-rFVIII production. Work is in progress to further optimize the process and validate its scalability.
    BMC Biotechnology 11/2011; 11(1):114. DOI:10.1186/1472-6750-11-114 · 2.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Monoclonal antibodies (Mabs) are biopharmaceuticals that are used increasingly for the treatment of a wide range of diseases such as cancer and autoimmunity. The effectiveness of therapeutic Mabs, most of which are immunoglobulin G (IgG), is dependent upon their ability to link antigen recognition with an appropriate effector function, to elicit a biological response in vivo that will treat the targeted disease. Studies over the last decade have determined that the effector function of Mabs is highly dependent upon the structure of the N-linked glycan of the Fc domain of the Mab. Total removal of the glycan is highly detrimental to the effector function of the Mab, but subtle differences in the glycan structure, such as the lack of fucose, can improve significantly bioactivity and function of the Mabs. Some Mabs are glycosylated in the variable Fab domain but in many cases the function is not known. The host cellular production system including the bioreactor environment can produce Mabs with very different glycosylation profiles that must be considered in bioprocess development. Cell culture conditions such as dissolved oxygen, nutrient levels, pH and feed strategies can all have considerable influence on the glycosylation of the Mab, which will affect product quality and efficacy. Great improvements have been made in techniques for high resolution and high throughput analysis of glycans such as normal phase-high performance liquid chromatography (HPLC) and mass spectrometry (MS). This has allowed a better understanding of the link between the structure and function, which will in turn lead to the development of safer and more effective Mabs. KeywordsAntibody-Glycosylation-Immunoglobulin-Glycan-CHO-Insect-Yeast
    01/1970: pages 251-292;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Advantages of the baculovirus insect cell expression system for production of recombinant proteins include high capacity, flexibility, and glycosylation capability. In this study, this expression system was exploited to produce anti-cancer monoclonal antibody (mAb) CO17-1A, which recognizes the antigen GA733. The heavy chain (HC) and light chain (LC) genes of mAb CO17-1A were cloned under the control of P(10) and Polyhedrin promoters in the pFastBac dual vector, respectively. Gene expression cassettes carrying the HC and LC genes were transposed into a bacmid in Escherichia coli (DH10Bac). The transposed bacmid was transfected to Sf9 insect cells to generate baculovirus expressing mAb CO17-1A. Confocal immunofluorescence and Western blot analyses confirmed expression of mAb CO17-1A in baculovirus-infected insect cells. The optimum conditions for mAb expression were evaluated at 24, 48, and 72 h after the virus infection at an optimum virus multiplicity of infection of 1. Expression of mAb CO17-1A in insect cells significantly increased at 72 h after infection. HPLC analysis of glycosylation status revealed that the insect-derived mAb (mAb(I)) CO17-1A had insect specific glycan structures. ELISA showed that the purified mAb(I) from cell culture supernatant specifically bound to SW948 human colorectal cancer cells. Fluorescence-activated cell sorting analysis showed that, although mAb(I) had insect specific glycan structures that differed from their mammalian counterparts, mAb(I) similarly interacted with CD64 (FcgammaRI) and Fc of IgG, compared to the interactions of mammalian-derived mAb. These results suggest that the baculovirus insect cell expression system is able to express, assemble, and secrete biofunctional full size mAb.
    Journal of Bioscience and Bioengineering 08/2010; 110(2):135-40. DOI:10.1016/j.jbiosc.2010.01.013 · 1.88 Impact Factor
Show more