Article

A cost‐effective operating strategy to reduce energy consumption in a HVAC system

International Journal of Energy Research (Impact Factor: 2.74). 09/2007; 32(6):543 - 558. DOI: 10.1002/er.1364

ABSTRACT The operation of the building heating, ventilating, and air conditioning (HVAC) system is a critical activity in terms of optimizing the building's energy consumption, ensuring the occupants' comfort, and preserving air quality. The performance of HVAC systems can be improved through optimized supervisory control strategies. Set points can be adjusted by the optimized supervisor to improve the operating efficiency. This paper presents a cost-effective building operating strategy to reduce energy costs associated with the operation of the HVAC system. The strategy determines the set points of local-loop controllers used in a multi-zone HVAC system. The controller set points include the supply air temperature, the supply duct static pressure, and the chilled water supply temperature. The variation of zone air temperatures around the set point is also considered. The strategy provides proper set points to controllers for minimum energy use while maintaining the required thermal comfort. The proposed technology is computationally simple and suitable for online implementation; it requires access to some data that are already measured and therefore available in most existing building energy management and control systems. The strategy is evaluated for a case study in an existing variable air volume system. The results show that the proposed strategy may be an excellent means of reducing utility costs associated with maintaining or improving indoor environmental conditions. It may reduce energy consumption by about 11% when compared with the actual strategy applied on the investigated existing system. Copyright © 2007 John Wiley & Sons, Ltd.

2 Bookmarks
 · 
102 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A model for minimization of HVAC energy consumption and room temperature ramp rate is presented. A data-driven approach is employed to construct the relationship between input and output parameters using data collected from a commercial building. Computational intelligence algorithms are applied to solve the non-parametric model. Experiments are conducted to analyze performance of the three computational intelligence algorithms. The experiment results indicate that particle swarm optimization and harmony search algorithms are suitable for solving the proposed optimization model. Three case studies of HVAC performance optimization based on simulation are presented. The computational results demonstrate that simultaneous minimization of energy and room temperature ramp rate is more beneficial than minimization of energy only. The proposed approach is implemented to demonstrate its capability of saving energy.
    Energy and Buildings 01/2014; 81:371–380. · 2.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The energy consumption of a heating, ventilating and air conditioning (HVAC) system is optimized by using a data-driven approach. Predictive models with controllable and uncontrollable input and output variables utilize the concept of a dynamic neural network. The minimization of the energy consumed while maintaining indoor room temperature at an acceptable level is accomplished with a bi-objective optimization. The model is solved with three variants of the multi-objective particle swarm optimization algorithm. The optimization model and the multi-objective algorithm have been implemented in an existing HVAC system. The test results performed in the existing environment demonstrate significant improvement of the system. Compared to the traditional control strategy, the proposed model saved up to 30% of energy.
    Energy. 06/2012; 42(1):241-250.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A novel procedure for learning Fuzzy Controllers (FC) is proposed that concerns with energy efficiency issues in distributing electrical energy to heaters in an electrical energy heating system. Energy rationalization together with temperature control can significantly improve energy efficiency, by efficiently controlling electrical heating systems and electrical energy consumption. The novel procedure, which improves the training process, is designed to train the FC, as well as to run the control algorithm and to carry out energy distribution. Firstly, the dynamic thermal performance of different variables is mathematically modelled for each specific building type and climate zone. Secondly, an exploratory projection pursuit method is used to extract the relevant features. Finally, a supervised dynamic neural network model and identification techniques are applied to FC learning and training. The FC rule-set and parameter-set learning process is a multi-objective problem that minimizes both the indoor temperature error and the energy deficit in the house. The reliability of the proposed procedure is validated for a city in a winter zone in Spain. © 2011 The Author. Published by Oxford University Press. All rights reserved.
    Logic Journal of the IGPL. 01/2012; 20(4):757-769.