Article

Current Constraints and Future Directions in Estimating Coextinction

Conservation Biology (Impact Factor: 4.36). 01/2010; 24(3):682 - 690. DOI: 10.1111/j.1523-1739.2009.01398.x

ABSTRACT  Coextinction is a poorly quantified phenomenon, but results of recent modeling suggest high losses to global biodiversity through the loss of dependent species when hosts go extinct. There are critical gaps in coextinction theory, and we outline these in a framework to direct future research toward more accurate estimates of coextinction rates. Specifically, the most critical priorities include acquisition of more accurate host data, including the threat status of host species; acquisition of data on the use of hosts by dependent species across a wide array of localities, habitats, and breadth of both hosts and dependents; development of models that incorporate correlates of nonrandom host and dependent extinctions, such as phylogeny and traits that increase extinction-proneness; and determination of whether dependents are being lost before their hosts and adjusting models accordingly. Without synergistic development of better empirical data and more realistic models to estimate the number of cothreatened species and coextinction rates, the contribution of coextinction to global declines in biodiversity will remain unknown and unmanaged.Resumen: La coextinción es un fenómeno poco cuantificado, pero los resultados de modelos recientes sugieren grandes pérdidas de biodiversidad local mediante la pérdida de especies dependientes cuando los hospederos se extinguen. Hay vacíos críticos en la teoría de coextincíón, y los delineamos en un marco de referencia para dirigir la investigación futura hacia estimaciones más precisas de las tasas de coextinción. Específicamente, las prioridades más críticas incluyen la obtención de datos más precisos de los hospederos, incluyendo el estatus de amenaza de las especie hospedera; obtención de datos sobre el uso de hospederos por especies dependientes en una amplia gama de localidades, hábitats y amplitud tanto de hospederos como dependientes; desarrollo de modelos que incorporen correlaciones de extinciones no aleatorias de hospederos y dependientes, como la filogenia y atributos que incrementan la susceptibilidad a la extinción; y determinar sí los dependientes se pierden antes que sus hospederos y consecuentemente ajustar los modelos. Sin el desarrollo sinérgico de mejores datos empíricos y modelos más realistas para estimar el número de especies coamenazadas y las tasas de coextinción, la contribución de coextinción a las declinaciones globales de biodiversidad permanecerá desconocida y no podrá ser manejada.

0 Bookmarks
 · 
72 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Models of coextinction identify parasites as one of the most menaced ecological groups. The number of host species a parasite uses should strongly affect its risk of coextinction. The naïve expectation is that the lower the number, the higher is the parasite's risk of being left with no hosts. Here we analyse the coextinction risk of 12,141 fish parasite species and find that highly specific parasites are not the most endangered, because they tend to use hosts with low vulnerability to extinction. This unexpected result may explain why the number of documented host-parasite coextinctions is much lower than predicted by theoretical studies.
    Nature Communications 04/2013; 4:1718. · 10.74 Impact Factor
  • Source
    Conservation Biology. 26(199-207).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite their high diversity and importance for humankind, invertebrates are often neglected in biodiversity conservation policies. We identify seven impediments to their effective protection: (1) invertebrates and their ecological services are mostly unknown to the general public (the public dilemma); (2) policy-makers and stakeholders are mostly unaware of invertebrate conservation problems (the political dilemma); (3) basic science on invertebrates is scarce and underfunded (the scientific dilemma); (4) most species are undescribed (the Linnean shortfall); (5) the distribution of described species is mostly unknown (the Wallacean shortfall); (6) the abundance of species and their changes in space and time are unknown (the Prestonian shortfall); (7) species ways of life and sensitivities to habitat change are largely unknown (the Hutchinsonian shortfall). Numerous recent developments in taxonomy, inventorying, monitoring, data compilation, statistical analysis and science communication facilitate overcoming these impediments in both policy and practice. We suggest as possible solutions for the public dilemma: better public information and marketing. For the political dilemma: red-listing, legal priority listing and inclusion in environmental impact assessment studies. For the scientific dilemma: parataxonomy, citizen science programs and biodiversity informatics. For the Linnean shortfall: biodiversity surrogacy, increased support for taxonomy and advances in taxonomic publications. For the Wallacean shortfall: funding of inventories, compilation of data in public repositories and species distribution modeling. For the Prestonian shortfall: standardized protocols for inventorying and monitoring, widespread use of analogous protocols and increased support for natural history collections. For the Hutchinsonian shortfall: identifying good indicator taxa and studying extinction rates by indirect evidence. (C) 2011 Elsevier Ltd. All rights reserved.
    Biological Conservation 01/2011; 144(11):2647-2655. · 3.79 Impact Factor

Full-text (2 Sources)

View
3 Downloads
Available from
Sep 11, 2014