Article

POLG mutations and Alpers syndrome

Università di Pisa, Pisa, Tuscany, Italy
Annals of Neurology (Impact Factor: 11.91). 06/2005; 57(6):921 - 923. DOI: 10.1002/ana.20498

ABSTRACT Alpers–Huttenlocher syndrome (AHS) an autosomal recessive hepatocerebral syndrome of early onset, has been associated with mitochondrial DNA (mtDNA) depletion and mutations in polymerase gamma gene (POLG). We have identified POLG mutations in four patients with hepatocerebral syndrome and mtDNA depletion in liver, who fulfilled criteria for AHS. All were compound heterozygous for the G848S and W748S mutations, previously reported in patients with progressive external ophtalmoplegia or ataxia. We conclude that AHS should be included in the clinical spectrum of mtDNA depletion and is often associated with POLG mutations, which can cause either multiple mtDNA deletions or mtDNA depletion. Ann Neurol 2005;57:921–924

0 Followers
 · 
245 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Non-alcoholic fatty liver disease (NAFLD) is not a single disease entity, rather it describes a spectrum of liver conditions that range from fatty liver (steatosis) to more severe steatosis coupled with marked inflammation and fibrosis (non-alcoholic steatohepatitis (NASH)) through to severe liver disease such as cirrhosis and possibly hepatocellular carcinoma. Obesity, notably abdominal obesity, is a common risk factor for NAFLD. The pathogenesis from steatosis to NASH is poorly understood and the “two hit” model, as suggested nearly two decades ago, provides a feasible starting point for characterisation of underlying mechanisms. This review will examine the oxidative stress factors (‘triggers’) which have been implicated as a “second hit” in the development of primary NASH. It is would be reasonable to assume that multiple, rather than single, pro-oxidative intracellular and extracellular triggers act in conjunction promoting oxidative stress that drives the development of NASH. It is likely that the common denominator of these pro-oxidative triggers is mitochondrial dysfunction. Understanding the contribution of each of these ‘triggers’ is an essential step in starting to understand and elucidate the mechanisms responsible for progression from steatosis to NASH, thus enabling the development of therapeutic targeting to prevent NASH development and progression. This article is protected by copyright. All rights reserved.
    Liver international: official journal of the International Association for the Study of the Liver 03/2014; 34(7). DOI:10.1111/liv.12523 · 4.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatic involvement is a common feature in childhood mitochondrial hepatopathies, particularly in the neonatal period. Respiratory chain disorders may present as neonatal acute liver failure, hepatic steatohepatitis, cholestasis, or cirrhosis with chronic liver failure of insidious onset. In recent years, specific molecular defects (mutations in nuclear genes such as SCO1, BCS1L, POLG, DGUOK, and MPV17 and the deletion or rearrangement of mitochondrial DNA) have been identified, with the promise of genetic and prenatal diagnosis. The current treatment of mitochondrial hepatopathies is largely ineffective, and the prognosis is generally poor. The role of liver transplantation in patients with liver failure remains poorly defined because of the systemic nature of the disease, which does not respond to transplantation. Prospective, longitudinal, multicentered studies will be needed to address the gaps in our knowledge in these rare liver diseases.
    The Journal of pediatrics 06/2013; 163(4). DOI:10.1016/j.jpeds.2013.05.036 · 3.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Human Herpes Virus type-6 (HHV-6) is a significant cause of the febrile illness roseola infantum in young children. Infection with HHV-6 typically causes a self-limited febrile illness, but occasionally is associated with central nervous system manifestations, including febrile seizures and encephalitis. Host factors associated with severe manifestations of HHV-6-associated neurologic disease remain poorly characterized. Case Reports We report two cases of previously healthy young boys with HHV-6-associated encephalitis who developed a progressive, and ultimately fatal, encephalopathy with refractory movement disorder concurrent with acquisition of acute HHV-6 infection. Both children were treated with the antiviral ganciclovir without improvement in their neurologic symptoms, although quantitative HHV-6 PCR of CSF and/or blood confirmed a decline in viral load with treatment. The clinical course in both cases was most consistent with Alpers-Huttenlocher syndrome, given the intractable seizures, developmental regression and, ultimately, death due to liver and renal failure. In support of this, post-mortem analysis identified both children to be compound heterozygotes for mutations in the mitochondrial polymerase γ gene, POLG. Conclusions POLG mutations are associated with Alpers-Huttenlocher syndrome, however no prior studies have examined the role of acute HHV-6 infection in these patients presenting with severe neurologic disease. It is possible the POLG mutation phenotype was unmasked and/or exacerbated by HHV-6 infection in these two patients, potentially contributing to a more rapid clinical deterioration. This report provides new insight into a previously unrecognized association between POLG mutations and poor neurologic outcome following HHV-6 infection.
    Pediatric Neurology 09/2014; 51(3). DOI:10.1016/j.pediatrneurol.2014.04.006 · 1.50 Impact Factor

Full-text

Download
197 Downloads
Available from
May 31, 2014