Microbial biofilms and catabolic plasmid harbouring degradative fluorescent pseudomonads in Scots pine mycorrhizospheres developed on petroleum contaminated soil

Department of Biosciences, Division of General Microbiology, Viikki Biocenter, P.O. Box 56 (Viikinkaari 9), FIN-00014, University of Helsinki, Helsinki, Finland
FEMS Microbiology Ecology (Impact Factor: 3.88). 01/1998; 27(2):115 - 126. DOI: 10.1111/j.1574-6941.1998.tb00529.x

ABSTRACT Cellular interactions and catabolic activities of mycorrhizal root associated non-sporulating bacteria were investigated in a simplified phytoremediation simulation involving a woody plant species. Mycorrhizal Scots pine (Pinus sylvestris) seedlings pre-colonised by Suillus bovinus or Paxillus involutus were grown in forest humus containing microcosms amended with petroleum hydrocarbon (PHC) contaminated soil. Fungal hyphae of both species, emanating from mycorrhizal roots, colonised the PHC contaminated soil over a 16-week period and dense long-lived patches of S. bovinus hyphae formed on the PHC contaminated soil. Transmission electron microscopy revealed a microbial biofilm at the PHC soil-fungal interface composed of differentiated pseudoparenchymous patch hyphae supporting a morphologically diverse bacterial population. Certain non-sporulating bacterial isolates closely associated with the S. bovinus patch hyphae or P. involutus‘web’ hyphae from the PHC soil harboured similar sized mega-plasmids (approx. 150 kb). Isolates of Pseudomonas fluorescens from the ‘patch’ mycorrhizospheres represented different biovars, displayed similar REP-PCR genomic fingerprints, grew on e.g. m-toluate and m-xylene as sole carbon sources, cleaved catechol, and harboured plasmid-borne catabolic marker genes, xylE and xylMA, involved in degradation of mono-aromatics. The plasmids were transmissible in vitro, and Pseudomonas putida transconjugants retained a similar catabolic profile. The identification of microbial biofilms containing catabolic bacteria in the external mycorrhizosphere is discussed in relation to both phytoremediation mechanisms and normal efficient nutrient mobilisation from highly lignin-rich forest soils.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Soil contamination caused by petroleum hydrocarbons has become a worldwide environmental problem. Microorganism combined with phytoremediation appears to be more effective for removal and/or degradation of petroleum hydrocarbons from impacted soils. The current study investigated the effect of inoculated with PGPR Serratia marcescens BC-3 alone or in combination with AMF Glomus intraradices on the phytoremediation of petroleum-contaminated soil. Pot experiments were conducted to analyze the effect on plant and soil for 90 days in greenhouse. The inoculation treatments showed higher plant biomass and antioxidant enzyme activities than the non inoculation control. Inoculation treatments also improved rhizosphere microbial populations in petroleum contaminated soil. The degradation rate of total petroleum hydrocarbons with PGPR and AMP co-inoculation treatment was up to 72.24 %. The results indicated that plant combined with microorganisms for remediation of petroleum hydrocarbons would be a feasible method.
    Ecotoxicology 01/2014; · 2.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the microhabitat that surrounds fungal hyphae in soil, coined the mycosphere, carbonaceous compounds that are released from the hyphae stimulate the growth of heterotrophic bacteria, and thus activate them, stimulating organism-to-organism contacts including genetic interactions. Therefore, the mycosphere is postulated to constitute a gene transfer arena, in which a plethora of genes, including locally-adaptive ones, are swapped across the resident microbial communities. Such genetic transfers may have plasmids, in particular ones with broad host ranges, as the basis. Indeed, evidence is increasing for the contention that plasmids play crucial roles as accelerators of evolution in the mycosphere, serving as a horizontal gene pool and, therefore, providing competence factors to local bacteria as well as fungi. The evidence so far points at mycosphere roles for two major plasmid classes, i.e. the IncP-1 and PromA groups. Moreover, recent data indicate that bacterium-to-fungus gene transfers are detectable and have been evolutionarily important. The large gene pool present in the mycosphere, coupled with the chances for cell-to-cell contact between mycosphere dwellers allows enhanced recombination frequencies, and as such, organisms are selected locally for enhanced fitness. This article is protected by copyright. All rights reserved.
    FEMS Microbiology Ecology 06/2014; 89(3):516. · 3.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Belowground biological interactions that occur among plant roots, microorganisms and animals are dynamic and substantially influence ecosystem processes. Among these interactions, the ectomycorrhizal (ECM) symbiosis is remarkable but unfortunately these associations have mainly been considered within the rather narrow perspective of their effects on the uptake of dissolved mineral nutrients by individual plants. More recent research has placed emphasis on a wider, multifunctional perspective, including the effects of ectomycorrhizal symbiosis on plant and microbial communities, and on ecosystem processes. This includes mobilization of N and P from organic polymers, release of nutrients from mineral particles or rock surfaces via weathering, effects on carbon cycling, interactions with mycoheterotrophic plants, mediation of plant responses to stress factors such as drought, soil acidification, toxic metals, and plant pathogens, rehabilitation and regeneration of degraded forest ecosystems, as well as a range of possible interactions with groups of other soil microorganisms. Ectomycorrhizas are almost invariably characterized by a Hartig net composed of highly branched hyphae which entirely surround the outer root cortical cells. The Hartig net is the place of massive bidirectional exchanges of nutrients between the host and the fungus. Through these branched hyphae ectomycorrhizal fungi connect their plant hosts to the heterogeneously distributed nutrients required for their growth, enabling the flow of energy-rich compounds required for nutrient mobilization whilst simultaneously providing conduits for the translocation of mobilized products back to their hosts. In addition to increasing the nutrient absorptive surface area of their host plant root systems, the extraradical mycelium of ectomycorrhizal fungi provides a direct pathway for translocation of photosynthetically derived carbon from their hosts to microsites in the soil and a large surface area for interaction with other soil micro-organisms. The detailed functioning and regulation of these mycorrhizosphere processes is still poorly understood and needs detailed molecular approach to study these mycorrhizosphere processes but recent progress in ectomycorrhizal associations is reviewed and potential benefits of improved understanding of mycorrhizosphere interactions are discussed.
    The Botanical Review 09/2013; 79(3). · 2.21 Impact Factor